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Guest Editorial

Adverse gene–environment interactions (G × E) probably influence 
most chronic diseases, including neurologic disorders and cancer. The 
genetic (G) contribution to different diseases varies, but several lines 
of evidence clearly show that non genetic factors have high attribut
able risks, often in the range of 80–90% (Willett 2002). The domi
nance of non genetic components highlights the importance of the 
environment (E) to chronic disease risks.

Genomic tools arising from the Human Genome Project (HGP), 
combined with bioinformatics studies, have allowed epidemiologists 
to examine the genetic component of chronic diseases. Genomewide 
association studies offer glimpses of the roles that particular genes play 
in disease development. However, the genetic factors identified thus 
far have generally been of low penetrance (a few percent at most) and 
have mainly offered clues as to which G × E (and G × G) effects might 
be worth pursuing.

In contrast, the tools for quantitative assessment of exposures—
based on measurements of chemicals in air, water, food, and the 
human body—have changed little since the 1970s. The lack of 
highthroughput methods of exposure assessment has motivated 
epidemiolo gists to rely upon selfreported data to categorize chemical 

exposures from envi
ronmental, endog
enous, and dietary 
sources.  With the 
possible exceptions of 
smoking and alcohol 
consumption, such 

selfreports have been unreliable predictors of longterm exposure lev
els and are poorly suited for detecting G × E effects. 

Although 30 years of investment in G now illuminates genetic 
determinants of diseases, we are still in the dark ages when it comes 
to quantifying E (i.e., human exposures). Recognizing the disparity in 
current knowledge between genes and environmental exposures, Wild 
(2005) defined the “exposome,” representing all environmental expo
sures (including those from diet, lifestyle, and endogenous sources) 
from conception onward, as a quantity of critical interest to disease 
etiology. If we expect to have any success at identifying the effects of E, 
G, and G × E on chronic diseases, we must develop 21stcentury tools 
to measure exposure levels in human populations. That is, we need an 
HGPlike commitment to quantify the exposome. 

Building Exposure Biology Centers to 
Put the E into “G × E” Interaction Studies
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Elaborating the exposome will be challenging, but some promis
ing analytical approaches are emerging from micro fluidics, nano
technologies, and mass spectrometry (MS). For example, a capil lary 
labonachip system has been developed to detect polycyclic aro
matic hydro carbons at partsperbillion levels on the surface of Mars 
(Stockton et al. 2009), and surface enhanced Raman spectroscopy 
using silver nanoparticles has detected (and speciated) arsenic at 
partsperbillion levels in water samples (Mulvihill et al. 2008). Both 
of these devices are portable, capable of high throughput, and can be 
adapted to other contaminants of interest. 

Technologic developments with liquid chromatography/tandem 
MS (LCMS/MS) now motivate ultrasensitive measurements of pro
tein adducts; these are excellent longterm biomarkers of exposure 
and internal dose for carcinogens (Rubino et al. 2009). Indeed, with 
National Institutes of Health Genes and Environment Initiative fund
ing, we are using protein adductomics to profile human exposures 
in archived serum from cancer case–control studies. We ultimately 
envision an analytical platform to rapidly quantify protein adducts 
in much the same way that the DNA sequencer made possible the 
success of the HGP. Given the relentless improvements in MS sensi
tivity, it is realistic to expect that this technology will be applied with 
a single drop of blood. In fact, our recent measure ment of a benzene
related adduct in dried blood spots opens the door to measure ments 
of in utero chemical exposures, using archived neo natal blood spots 
(Funk et al. 2008).

Simple and inexpensive monitoring methods can motivate reduc
tions in exposures to toxic chemicals, as has been observed with inor
ganic lead (Pirkle et al. 2005). Indeed, given people’s concerns about 
elevated levels of xeno biotic chemicals in their bodies, commercial 
markets could ultimately develop for exposure sensors. However, 
without a regulatory mandate, we cannot rely upon the free mar
ket alone to generate an exposuresensing industry. We must focus 
instead upon the profound shortcomings that epidemiologists face 
in discovering environmental causes of chronic diseases without 
adequate exposure data. Facing a similar dilemma three decades ago, 
the HGP created several DNA sequencing centers to rapidly sequence 
the genome, and thereby created an infrastructure from which we 
still benefit. Imagine if we could build six or seven exposure biol
ogy centers to quantify chemical exposures rapidly and at low cost. 
The impact such centers would have on our understanding of E and 
G × E as determinants of human disease would be extraordinary. 

True, an HGPlike effort for the environment would require a 
large investment. However, at a government cost of $2.7 billion (in 
$1991), HGP technologies will generate a projected $45 billion this 
year in sales. It does not require a great leap of faith to expect a simi
lar multiplier from concerted action to quantify human exposures. 
As important sources of exposure are recognized and controlled, one 
can also anticipate reductions in morbidity and mortality that would 
translate into enormous savings in health care expenses.
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