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Abstract

The association between the genotypic frequencies of
the cytochrome P450 1A1 polymorphism and the risk
of childhood leukemia is explored with the data from
a matched case-control study. The data are displayed
in a 3 � 3 case-control array, and the discordant pair
counts are assessed for quasi-independence, homoge-
neity, and symmetry. This statistical approach is
contrasted to the more typical analysis of matched

data based on a conditional logistic model and
estimated odds ratios. The statistical analysis of 175
matched pairs (part of a large study of potential
environmental/genetic influences on the risk of
childhood leukemia) showed no evidence of an asso-
ciation between cytochrome P450 1A1 genotype fre-
quencies and case-control status. (Cancer Epidemiol
Biomarkers Prev 2004;13(8):1371–4)

Introduction

The possible association between cytochrome P450 1A1
(CYP1A1) genetic polymorphism and disease has been
explored by several investigators. Some examples are the
investigations of Ladonna et al. (1) on Spanish toxic oil
syndrome, Ishibe et al. (2) on breast cancer, and Kim et al.
(3) on cervical cancer and several reports on the
association with childhood leukemia (e.g., refs. 4, 5).
These analyses, as well as most analyses of matched case-
control genetic data, are summarized in terms of ratios of
discordant pairs of observations (odds ratios) estimated
from conditional logistic regression models. The follow-
ing statistical approach to the analysis of the CYP1A1/
leukemia matched data is based on a 3 � 3 case-control
array that allows an assessment of three fundamental
statistical issues (i.e., independence, homogeneity, and
symmetry of the discordant pairs). In addition, this
approach is contrasted to the more typical use of odds
ratios estimated from a conditional logistic model.

Data

To describe the CYP1A1 polymorphism and the risk of
acute lymphoblastic leukemia, data collected as part of
the Northern California Childhood Leukemia Study are
used. These matched case-control observations were
abstracted from a large number of genetic/environmen-
tal variables that potentially influence the risk of
childhood leukemia. The cases are children ages 0 to 14

years old with newly diagnosed leukemia (1995 to 1999)
obtained from major hospitals in the San Francisco Bay
Area. Comparison with California State Cancer Registry
data shows that >90% of the eligible children were
ascertained. The control children were randomly selected
from birth certificate records and matched to cases with
respect to sex, age, race, and county of birth. A more
extensive description of this far-ranging study is found
elsewhere (6). The CYP1A1/leukemia data consisting of
175 matched pairs of acute lymphoblastic leukemia cases
and their controls (117 concordant and 58 discordant
pairs) are given in Table 1.

Quasi-Independence

Genotype data classified into a square array are quasi-
independent when the categorical variables (row and
columns) are independent with respect to only the
discordant pairs. No restrictions are placed on the
concordant pairs (the main diagonal of the case-control
array). In symbols, the six expected cell counts of the
discordant pairs (denoted Fij) are

Fij ¼ Npiqj for i 6¼ j ¼ 1; 2; and 3:

The values pi represents the case genotypic frequencies,
and qj represents the control genotypic frequencies. The
quantity N represents the ‘‘total number of pairs’’ that
would have occurred if the genotypic frequencies were
independent and the data were randomly sampled.
Specifically, the value N = n / fpiqj for i 6¼ j = 1, 2, and
3 where n represents the total observed number of
discordant pairs.

The maximum likelihood estimates of the pi and qj

frequencies are found by iterative techniques (7) or an
application of a specialized log-linear model (8). Both
procedures are designed to estimate the genotypic fre-
quencies excluding the concordant pairs from consideration

Received 9/24/03; revised 12/22/03; accepted 2/9/04.

Grant support: U.S. Environmental Health Sciences research grants R01 ES09137
and PS42 ES04705.

The costs of publication of this article were defrayed in part by the payment of
page charges. This article must therefore be hereby marked advertisement
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: Steve Selvin, School of Public Health, University of California
at Berkeley, Berkeley, CA 94720. Phone: 510-642-3241; Fax: 510-643-5163.
E-mail: selvin@stat.berkeley.edu

Copyright D 2004 American Association for Cancer Research.

Cancer Epidemiology, Biomarkers & Prevention 1371

Cancer Epidemiol Biomarkers Prev 2004;13(8). August 2004



(truncated). For the Northern California Childhood
Leukemia Study data (Table 1), these estimated geno-
typic frequencies are

p̂1 ¼ 0:339; p̂2 ¼ 0:617; p̂3 ¼ 0:044;

q̂1 ¼ 0:305; q̂2 ¼ 0:659; q̂3 ¼ 0:035:

A natural estimate of the expected number of case-
control discordant pairs based on the quasi-independence
model is F̂ij = N̂p̂iq̂j where N̂ = n / fp̂ i q̂ j for i 6¼ j = 1, 2,
and 3. These expected counts estimated from the data
in Table 1 are displayed in Table 2.

The Pearson m2 goodness-of-fit test statistic (1 df)
summarizing the deviations of the observed values from
the expected values (Table 1 versus Table 2) is XQ

2 = 0.712
(P = 0.399). The df values are the number of observations
(off-diagonal cell frequencies = 6) minus the number
of independent parameters necessary to estimate the
expected values or to specify the appropriate log-linear
model. In the case of quasi-independence, five indepen-
dent estimated parameters establish the expected values
in Table 2 making the df equal to 1 (6 � 5 = 1).

In the context of the analysis of matched case-control
data, another form of this same m2 test is called a ‘‘test
for the consistency of the odds ratios’’ (9). The non-
informative concordant pairs are excluded because the
increased correlation within pairs due to the matching
process tends to increase the number of concordant pairs
relative to the number predicted by a model postulating
independence.

Marginal Homogeneity

Quasi-independence does not imply marginal homo-
geneity (identical case and control genotypic frequen-
cy distributions). The issue of marginal homogeneity

in general is the subject of several statistical articles
(e.g., refs. 10-12). The expected row/column totals,
under the conjecture of marginal homogeneity, are
estimated by

N̂i ¼
ni: þ n:i

2

where ni. = fj f ij , n.j = fi f ij and f ij represents the
number of pairs in the (i,j)th cell. For the CYP1A1/
leukemia data, the estimated homogeneous marginal
totals are

N̂1 ¼ 129:0; N̂2 ¼ 41:5; and N̂3 ¼ 4:5:

Symmetry

When the case-control discordant pairs are independent
and the marginal frequencies are homogeneous, the
expected counts of case-control pairs create a symmetri-
cal array; that is, when case-control status is unrelated to
the genotypic frequencies, the counts within the three
kinds of discordant pairs ( f ij versus f ji) differ by chance
alone. Under these conditions (independence + homoge-
neity = symmetry), the maximum likelihood estimates
of the genotypic frequencies (denoted P̂i) are

P̂i ¼
ffi jg ffi;kg

ff1;2g ff1;3g þ ff1;2g ff2;3g þ ff1;3g ff2;3g
for j 6¼ k

where f {ij } = f ij + fji . Because the number of independent
parameters equals the number of independent observa-
tions (2), the maximum likelihood estimates p̂ i can be
derived by equating expected and observed frequencies
(13). The specific estimated genotype frequencies from
the acute lymphoblastic leukemia data are

P̂1 ¼ 0:320; P̂2 ¼ 0:641; and P̂3 ¼ 0:039:

These estimated genotypic frequencies produce an
estimate of the expected counts of matched case-control
discordant pairs (denoted FijV) where

F̂V
ij ¼ N̂VP̂iP̂j ¼

ffijg
2

The estimated ‘‘sample size’’ is N̂ V= n / fP̂iP̂j for i 6¼ j
= 1, 2, and 3. The Northern California Childhood
Leukemia Study matched pairs data (Table 1) produce
the estimates displayed in Table 3. These expected
discordant pairs are quasi-independent, and the mar-
ginal frequencies are homogeneous.

Table 1. The observed numbers of matched pairs by
case-control status and CYP1A1 genotypes

Control: AA* Control: AG Control: GG Total

Case: AA* 103 26 2 131
Case: AG 23 14 2 39
Case: GG 1 4 0 5
Total 127 44 4 175

*AA, CYP1A1 homozygotic wild-type.

Table 2. The expected numbers of discordant
matched pairs when case-control status is exactly
quasi-independent of the CYP1A1 genotypic fre-
quencies

Control: AA* Control: AG Control: GG Total

Case: AA 103 26.582 1.418 131
Case: AG 22.418 14 2.582 39
Case: GG 1.582 3.418 0 5
Total 127 44 4 175

*AA, CYP1A1 homozygotic wild-type.

Table 3. The expected number of discordant matched
pairs when case-control status is exactly unrelated to
the CYP1A1 genotype frequencies

Control: AA* Control: AG Control: GG Total

Case: AA 103 24.5 1.5 129.0
Case: AG 24.5 14 3.0 41.5
Case: GG 1.5 3.0 0 4.5
Total 129.0 41.5 4.5 175

*AA, CYP1A1 homozygotic wild-type.

Cytochrome P450 1A1 and Childhood Leukemia1372

Cancer Epidemiol Biomarkers Prev 2004;13(8). August 2004



The Pearson goodness-of-fit test statistic (Table 1
versus Table 3) is XS

2 = 1.184 (P = 0.757) and has an
approximate m2 distribution with 3 df when the observed
counts randomly differ from the expected counts. The
comparison of these observed and expected numbers
of discordant pairs is identical to the sum of three
McNemar-like test statistic (14). In symbols,

X 2
S ¼ f

ðfij � fjiÞ2

fij þ fji
for i 6¼ j ¼ 1; 2; and 3:

The m2 test for symmetry requires three indepen-
dent estimated parameters giving a test statistic with
3 df (6 � 3 = 3). In addition, this test statistic partitions
into three independent components each with 1 df .

In addition, the three estimated genotypic frequen-
cies P̂i lead to a compact form of a m2 test statistic to
evaluate marginal homogeneity in a 3 � 3 case-control
array. The test statistic is

X 2
H ¼

1

2N̂ V
f
ðni: � n:iÞ2

P̂i

for i ¼ 1; 2; and 3:

The test statistic XH
2 summarizes deviations from

marginal homogeneity and has an approximate m2

distribution with 2 df when the expected marginal
frequencies are homogeneous. The m2 expression for
testing homogeneity requires four independent estimat-
ed parameters yielding 2 df (6 � 4 = 2). For the Northern
California Childhood Leukemia Study data, the m2 value
is XH

2 = 0.479 (P = 0.787).

Conditional Logistic Model

The additive conditional logistic model applied to
genotype frequency data collected in a matched design
yields estimates of the logarithms of the three ratios
of discordant pairs (denoted b i). When the genotypic
frequencies are the same for both cases and controls, the
model estimated ratio within all three kinds of discor-
dant pairs is 1 (b1 = b2 = b3 = 0). Furthermore, the
additive model requires that b1 + b3 = b2. For the
CYP1A1/leukemia data, these estimated log-ratios are

b̂1 = �0.170 for AA/AG discordant pairs,
b̂2 = 0.110 for AA/GG discordant pairs, and
b̂3 = 0.280 for AG/GG discordant pairs.

The corresponding estimated odds ratios (eb̂1) are 0.843,
1.116, and 1.323, respectively.

The estimated log-ratios are directly related to the
expected cell counts generated by the quasi-indepen-
dence model. In symbols, the estimates from the quasi-
independence model give

F̂21

F̂12

¼ eb̂1 ;
F̂31

F̂13

¼ eb̂2 ; and
F̂32

F̂23

¼ eb̂3

In other words, both models generate identical
expected counts contained in a 3 � 3 case-control
array (Table 2).

From another prospective, both models necessarily
conform to the relationship that

D ¼ F21F13F32

F12F31F23

¼ eb1�b2þb3 ¼ 1:0

or

logðDÞ ¼ ½logðF21Þ þ logðF13Þ þ logðF32Þ�

�½logðF12Þ þ logðF31Þ þ logðF23Þ�

¼ b1 � b2 þ b3 ¼ 0:0:

The requirement that D = 1 is essentially the definition of
quasi-independence or model additivity (no interaction)
within a 3 � 3 array.

The distribution of the estimated value

logðD̂Þ ¼ ½logðf21Þ þ logðf13Þ þ logðf32Þ�

�½logðf12Þ þ logðf31Þ þ logðf23Þ�

has estimated variance given by

v̂ ¼ f
1

fij
for i 6¼ j ¼ 1; 2; and 3:

These two estimates provide a computationally easy and
additional assessment of the correspondence between the
observed and the expected counts generated by the
quasi-independence or the additive conditional logistic
models.

The estimate of log(D̂) and its estimated variance
from the CYP1A1/leukemia data are log(D̂) = �1.264
and v̂ = 2.332 yielding the test statistic

X 2
QV ¼

½logðD̂Þ�2

v̂
¼ ð�1:264Þ

2

2:332
¼ 0:685ðP ¼ 0:408Þ

The value XQV
2 has an approximate m2 distribution with 1

df when the data (Table 1) randomly differ from the
expected counts generated by the quasi-independence or
the conditional logistic models (Table 2). In general, this
m2 statistic (XQV

2) and the m2 statistic (XQ
2) will be similar,

particularly for case-control arrays with many discordant
pairs.

It should also be noted that the likelihood ratio test
based on the additive conditional logistic model ad-
dresses only the hypothesis that b1 = b2 = b3 = 0 or the
ratios of the corresponding discordant pairs are 1.0. The
score likelihood ratio test statistic is identical to the
previously described test for marginal homogeneity (XH

2).

Discussion

A symmetrical case-control array of matched pairs data
indicates that no association likely exists between case-
control status and genotypic frequencies. When statistical
evidence emerges of nonsymmetry, two issues become
important (i.e., independence and marginal homogeneity).
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That is, two reasons exist for a significant lack of
symmetry: the failure of the genotypic frequencies to be
independent (failure of the additive conditional logistic
model to reflect the data) and the failure of the matched
data to have the same case and control genotypic
frequencies or both. These two sources of deviation for
a symmetrical array are easily identified and indicate
different dimensions of the association between geno-
typic frequencies and disease risk.

In general, the likelihood ratio statistic estimated from
an additive conditional logistic model addresses only the
issue of marginal homogeneity of the case-control array
because an additive model explicitly requires the
discordant matched pairs to be independent. That is,
substantial differences in the ratios of discordant pairs
can exist in a 3 � 3 case-control array with perfectly
homogeneous marginal frequencies XH

2 = 0 when the
genotypic frequencies that determine the numbers of
discordant pairs are not independent. Without an assess-
ment of the quasi-independence model XQ

2 or equiva-
lently the consistency of the odds ratios (b1 + b3 = b2),
inferences from matched case-control data are potentially
biased and even potentially misleading. As with statis-
tical models in general, goodness-of-fit is a critical issue.

The interpretation of quasi-independence of two
variables is not different in principle from the interpre-
tation in most contingency tables. Quasi-independence
becomes an issue when specific cell frequencies are
truncated from consideration. In a matched pairs de-
sign, the frequencies on the diagonal cells of the case-
control array (the concordant pairs) are not included in
the analysis. Nevertheless, two variables are not in-
dependent (or not quasi-independent) when the occur-
rence of one changes the probability of the occurrence
of the other. For example, case-control status and
genotypic frequencies are not quasi-independent when
P(AA j AG is a control) is not equal to P(AA case). A
phenotype frequency among the matched pair cases
will not be quasi-independent when, for example, cases
and controls have differing racial compositions and the
phenotypic frequencies under investigation differ
among races. In fact, nonindependence potentially arise
whenever the controls fail to be a random sample of the
population from which the cases were selected.

The m2 test of symmetry is a simultaneous evaluation
of both independence and homogeneity. Applied to the
CYP1A1/leukemia data, this test produces no evidence
of an association between genotypic frequencies
and case-control status (XS

2 = 1.184 with P = 0.757). It
then becomes a foregone conclusion that m2 tests of
quasi-independence and marginal homogeneity
(XQ

2 = 0.712 and XH
2 = 0.479) consists of two non-

significant pieces.
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