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Translocation, a physical movement of genetic material from one chromosome to another, can result in the aberrant linkage of two
cellular genes. This type of fusion may disrupt cellular function by producing novel, biologically active fused genes, or by triggering
the activation of normally quiescent growth-associated genes. Either of these mechanisms provides a putative oncogenic stimulus, and
indeed, several gene fusions from translocations have been identi� ed in leukemias, lymphomas, and sarcomas. Although the oncogenic
effects of genes involved in translocations have been under intensive study, little is known regarding the formation of translocation
fusions themselves. The locations of these fusions are typically independent of the resultant oncogenic protein because they usually
arise within certain bounded noncoding regions of the genes. Thus the resultant proteins can be ignored in studying translocations,
and we can focus exclusively on the fusions. A patterned (in particular, clustered) distribution of fusion breakpoints will potentially
yield relevant information about the fusion process by identifying regions prone to recombination. Accordingly, the statistical analysis
of translocation breakpoints has focused on the extent to which they cluster. Somewhat questionable methods have been used in this
regard. After highlighting these shortcomings, we introduce a variety of approaches, including scan statistics, bandwidth tests, and gap
statistics, that provide a comprehensive means for appraising clustering. We apply this battery to TEL–AML1 translocations, the most
common translocation in childhood acute lymphoblastic leukemia. The results obtained indicate generally weaker evidence for clustering
than previously reported, and also highlight differences between the statistical approaches.
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1. INTRODUCTION

Translocation is de� ned as the physical movement of
genetic material between two nonhomologous chromosomes.
In the simplest case, formation of a translocation involves
double-strand breaks on two chromosomes followed by the
aberrant fusion of the DNA free ends to the wrong partner
chromosome. The resulting two derivative chromosomes with
swapped arms can be viewed on a glass slide preparation of
chromosomes, or a karyotype, of a patient’s cells. At the level
of the DNA sequence, speci� c genes may be split in two,
resulting in the fusion of two genes not normally associated
with each other. This resultant juxtaposition of two cellular
genes can generate chimeric protein products in which the
functional domains of two separate genes are fused together
and/or can alter regulation of gene expression (Rabbitts 1994).
More than 600 different acquired translocations in the neo-
plastic diseases have been described. A given translocation
between two particular cellular genes is consistently associ-
ated with a speci� c tumor type. This permits the development
of diagnostics and therapeutics based on particular gene fusion
products.

Translocations in the leukemias, our focus here, usually
result in the formation of a chimeric protein in which the
proximal end of one protein is fused to the terminal end
of another protein. These proteins are usually transcription
factors—proteins in the nucleus that control the expression of
other genes involved in the growth and development of blood
cells. When the normal development of blood stem cells is
disrupted by the aberrant fusion transcription factor, leukemia
may result. Genes are structured with protein-coding regions,
or exons, interspersed with noncoding regions, or introns.
Translocations that produce chimeric oncoproteins are con-
strained to occur within speci� c introns to preserve the order-
ing of exons necessary to generate an oncoprotein. However,
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within susceptible introns there is great latitude as to where
the DNA may be broken and refused on either chromosome.
This breakage/refusion site is called a “breakpoint” and is
unique to each individual patient diagnosed with a particular
translocation.

One of the most common translocations in leukemia is the
fusion of the TEL gene on chromosome 12 to the AML1 gene
on chromosome 21. This translocation occurs in 25% of cases
of childhood acute lymphoblastic leukemia, the most common
cancer of childhood. We have shown that the TEL–AML1
fusion occurs prenatally in most children who develop this
form of leukemia, even up to age 14 (Wiemels et al. 1999a;
Wiemels, Ford, Van Wering, Postma, and Greaves 1999b).
Despite this knowledge of the temporal origin of the translo-
cation, little is understood about the process of fusion forma-
tion. Considered a “master” transcription factor, AML1 is a
critical regulator of the development of nearly all blood cells.
Blood cells develop from embryonic precursor cells, or stem
cells, into functional types, such as red blood cells, T cells,
and B cells. The TEL–AML1 protein is thought to result in
the aberrant repression of genes that are normally induced by
AML1 during the process of differentiation, or development
of blood stem cells into functional types (Guidez et al. 2000).
With the process of differentiation “frozen,” the blood stem
cells may gain a form of immortality, one component of the
leukemic cell phenotype. The fusion occurs within the 14,000
base pair (bp) intron 5 of TEL and large 160,000 bp intron
1–2 of AML1. Both TEL and AML1 are involved in a various
other translocations in other lymphoid and myeloid leukemia
subtypes in children and adults (Greaves 1999), making the
study of translocations involving these genes applicable to a
wide range of the disease.

The elucidation of some common translocation breakpoint
sequences in the lymphomas has resulted in a clear causal
mechanism. Very tight clustering has been observed, which
implicates the involvement of “recombination site sequences”
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(RSSs) in the formation of such translocations (Jager et al.
2000; Tsujimoto, Gorham, Cossman, Jaffe, and Croce 1985).
These are short 16-bp motifs whose orientation allows them
to be recognized by select cellular enzymes. These enzymes
normally rearrange genes of the immune system to produce
the antibody repertoire. This gene rearrangement process is
critical for formation of the estimated 107 different antibodies
necessary for immune system function. However, the aberrant
recognition of RSS in other cellular genes can have the unfor-
tunate consequence of producing translocations. The fact that
the cells from which lymphomas originate normally express
these same enzymes serves to implicate RSS in the genesis of
translocation.

The situation for the leukemias is different in that break-
point distributions are seemingly more diffuse, resulting in a
poor understanding of etiology. Recombination site sequences
are not involved in leukemia translocations. This is because the
translocations occur at a very early progenitor stage in blood
cell development, preceding the expression of the enzymes
that manipulate RSS. Only recently have methods been devel-
oped to sequence these leukemia fusions (Reichel et al. 1999;
Thandla et al. 1999; Wiemels and Greaves 1999). Several
hypotheses for explaining leukemia translocations based on
these breakpoints have been advanced. These involve either (a)
the primary base sequence of DNA (e.g., motifs for enzyme
binding sites), (b) secondary structures (paranemic, or base-
unpaired DNA structures), or (c) tertiary organization of chro-
matin. So far, however, little consensual evidence supports a
particular mechanism, with some studies implicating primary
or secondary structures (e.g., Wyatt, Rudders, Zelenetz, Delel-
lis, Krontiris 1992; Wiemels and Greaves 1999) and others
implicating tertiary structures (Khodarev, Sokolova, Vaughan
1999; Strissel, Strick, Rowley, and Zeleznik-Le 1998).

Establishing of breakpoint clusters in particular regions
would imply that speci� c features (i.e., motifs) of the primary
DNA sequence near the location of a cluster may play a role
in translocation. Attempts to search for several hypothesized
breakpoint motifs have been undertaken for TEL–AML1 and
other leukemia translocation fusions. These attempts revealed
no hint of association between breakpoint location and these
features of primary DNA structure. Although the negative
� ndings by no means preclude a role for some as-yet unchar-
acterized motif, justi� cation of the labor-intensive nature of
a comprehensive motif-based analyses would require some
earlier evidence of clustering. So appraising clustering is
an expedient preliminary step to undertaking motif search.
Accordingly, to the extent that the location of translocation
breakpoints has been subject to any statistical treatment, the
analyses have focused on evaluating and localizing putative
clusters.

This article was partially motivated by shortcomings iden-
ti� ed in the limited approaches to appraising the cluster-
ing taken to date. Section 2 reviews these approaches and
describes various improvements, drawing on recent statisti-
cal work. These methods include scan statistics with atten-
dant distributional approximations, Silverman’s (1981) band-
width test procedure, and gap statistics (Tibshirani, Walther,
and Hastie 2001). As illustrated, these methods differ accord-
ing to whether the emphasis is on verifying a speci� c cluster

or on determining the number of clusters. Section 3 presents a
reanalysis of the particular TEL–AML1 fusion data described
earlier, and Section 4 describes some possible extensions and
offers a concluding discussion.

2. APPROACHES TO APPRAISING CLUSTERING

To date, very little formal assessment of clustering has
been undertaken in evaluating translocation breakpoint distri-
butions. Indeed, van der Reijden et al. (1999) asserted (in
the title of their article itself!) that acute myeloid leukemia–
associated inv(16)(p13q22) breakpoints are tightly clustered
without reporting any supportive analysis. The only formal
approach to date is that of Wiemels et al. (2000), and we focus
on their data and methods. A preview is provided by Figures 1
and 2.

A total of 24 patients were studied, deriving from col-
laborations spanning a population-based childhood epidemi-
ology study in the United Kingdom (18 patients) and clinics
in Buffalo, New York (4 patients) and Valhalla, New York
(2 patients). Subject to DNA availability, all potential patients
were included. The DNA availability was speci� c to the hos-
pital of diagnosis and treating physician and is judged to be
independent of the pathologic or biologic characteristics of the
leukemia. Consequently, the selection process should affect
neither the breakpoint distribution nor the likelihood of detect-
ing clustering.

All of the patients were identi� ed to have the TEL–
AML1 translocation using reverse-transcriptase polymerase
chain reaction (RT-PCR), which speci� cally targets the TEL
exon 5–AML1 exon 2 mRNA. No other mRNA structures
have been reported in the leukemias. However, the RT-PCR
assay does not determine the patient-speci� c DNA breakpoint.
Only patients with suf� cient high molecular weight diagnos-
tic DNA available, as well as additional archived material,
can be used for further analysis. The genomic DNA fusions
(which provide the patient-speci� c breakpoints) were identi-
� ed using molecular biology methods that are precise (error
free) in locating the breakpoint. For 20 subjects, breakpoints
were sequenced using long-distance inverse polymerase chain
reaction methods (Wiemels and Greaves 1999); those for the
remaining four patients (from Buffalo) were sequenced using
traditional techniques with cloning vectors (Thandla et al.
1999).

The breakpoint data are displayed in Figure 1. The shaded
boxes represent exons of the respective genes, with the break-
points occurring primarily in the intervening introns. The scale
is in base pairs; note the much greater range for AML1
than for TEL. Each numeral above the arrow showing break-
point location is a patient identi� er; for each of the 24
patients, the location of breakpoints for both derived chro-
mosomes being displayed. Note that breakpoint data are in
fact paired; each patient has breakpoints within both the TEL
and AML1 intronic regions. Corresponding bivariate cluster-
ing approaches are addressed in Section 2.3.

Figure 2, from Wiemels et al. (2000), depicts breakpoint
density estimates using (Gaussian) kernel density estimation
with prescribed bandwidths. The bandwidths used are 1000 bp
for TEL and 2000 bp for AML1. Later, we show that these
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Figure 1. Breakpoint Locations Within the (a) TEL and (b) AML1 Genes. The shaded boxes represent exons of the respective genes. In both
panels the scale is in base pairs. The data are paired with the numerals above each arrow showing breakpoint location as a patient identi’ er.

Figure 2. Breakpoint Locations With Corresponding Gaussian Kernel Density Estimates ( ) and 95% Pointwise Con’ dence Envelopes
( ) for (a) TEL and (b) AML1. Starred numerals designate the putative clusters reevaluated in Table 1.
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are much too small. Regions were the kernel density esti-
mate exceeds a 95% con� dence envelope obtained via simu-
lation (described in Sec. 2.2) are designated as clusters, this
process yielding the three (four) numbered clusters for TEL
(AML1) that we reevaluate via scan statistic approximations,
as described next.

2.1 Existence: Nearest-Neighbor and Scan Statistics

Wiemels et al. (2000) used k nearest-neighbor (kNN) dis-
tances averaged over all breakpoints to establish the exis-
tence of clustering and, subsequently, kernel density estima-
tion to localize the clusters (regarded as equivalent to modes).
Here k designates the number of nearest neighbors consid-
ered. We � rst focus on kNN distances, then discuss density
estimation approaches in Section 2.2.1. Cuzick and Edwards
(1990) provided a motivation for average kNN distances in a
case-control context; however, the rationale does not extend to
the current setting, as the following example shows. Consider
a situation where we have c ƒ 1 tightly clustered points and
one outlying point well separated from the cluster. Now con-
sider an alternate con� guration with c points equispaced on an
interval of a length equal to the distance between the cluster
and the outlier. These two arrangements will have essentially
the same average � rst nearest-neighbor distance despite being
diametrically opposite in terms of the extent of clustering.
The salient feature of this example is that the use of average
(global) nearest-neighbor distances can be insensitive to the
presence of clustering because of the in� uence of (a few) iso-
lated points. In contrast, the use of minimum kNN distances is
not so affected. Indeed, the use of the scan statistics, which is
equivalent to the minimum kNN distance, is well established
for assessing clustering and has been applied in many set-
tings (see, e.g., Wallenstein and Neff 1987; Karlin and Macken
1991). Although minimum kNN distances are distributionally
less tractable than average kNN distances, accurate, computa-
tionally feasible approximations are available. We next outline
two such approximations, which we illustrate in Section 3.

Without loss of generality, for the purposes of clustering,
we can rescale the intronic region where breakpoints arise to
the unit interval 401 15. Let X11X21 : : : 1 Xn be independent and
identically drawn from µ40115, the uniform distribution on
the unit interval, with X4i5 the corresponding order statistics.
Let Nx1xCd

D #8Xi 2 Xi
2 4x1 x C d59 be the number of points

contained in the interval 4x1 x Cd5. Then the scan statistic for
prescribed interval length d is de� ned as Nd

D supx Nx1xCd,
the maximum number of points in such an interval. If we also
de� ne Lk to be the length of smallest subinterval of 401 15
containing k points, then Lk is the minimum kNN statistic, and
we have

Pr8Nd ¶ k9 D Pr8Lk µ d91 (1)

so that tests based on the scan and minimum kNN statistics
are equivalent.

The exact distribution corresponding to (1) is exceedingly
complex (see Huntington and Naus 1975) and computationally
impractical. This had led to various approximations. Instead of
working directly with scan or minimum kNN statistics, Huf-
fer and Lin (1997) reformulated in terms of clumps. In par-
ticular, a k 2 d clump exists if there are k consecutive points

(here translocation breakpoints) in an interval of length d. Let
Yk2d ² Y be the number of k 2 d clumps,

Y D
nƒkC1X

iD1

I 8X4iCkƒ15
ƒ X4i5 µ d90 (2)

Because Y ¶ 1 if and only if Nd ¶ k, we have

Pr8Nd ¶ k9 D Pr8Y ¶ 191 (3)

so we can effect approximation to the distribution of the scan
statistic by approximating Pr8Y ¶ 19.

Huffer and Lin (1997) pursued this by � nding (in differ-
ent ways) discrete distributions that match the moments of Y .
Here we expand on just one of the simplest approaches, based
on Markov chain approximations, which uses only the � rst two
moments of Y . Later we use both this and another approxima-
tion based on matching moments to a compound Poisson dis-
tribution; the two methods yield very similar results. Explicit
formulas for the � rst two moments of Y are obtained using
properties of spacings, which are distances between consecu-
tive order statistics. The resultant formulas involve the sample
size n, number of points k, interval width d, and cumulative
binomial and trinomial probabilities (see Huffer and Lin 1997,
sec. 3.2). Although quite general, these formulas do not hold
for k µ 3 and n < 24k ƒ 15, a restriction that we address in
Section 3.

From (2), we see that Y is de� ned as sum of w D n ƒ
k C 1 indicators. The Markov chain approximation is based
on the hope that this sequence of indicators behaves like a
two-state (80119) Markov chain. Consider a two-state Markov
chain whose transition matrix P has off-diagonal entries p01

D
a and p10 D b. The stationary distribution for this chain is � 0 D
b=4a C b5 and � 1

D a=4a C b5. Let Z11Z21 : : : be a Markov
chain started from this stationary distribution with transition
matrix P and de� ne eY D Pw

iD1 Zi . Then we have

Pr8eY ¶ 19 D 1 ƒ 41ƒ � 1541 ƒ a5wƒ11 (4)

EeY D w� 11 (5)

and

Var4eY 5 � 141 ƒ � 15

� w C 2 1=4aC b5 ƒ 1
¢

w ƒ 1=4a C b5
¢¢

0 (6)

Equating (5) and (6) to the � rst two (central) moments
of Y yields closed-form solutions for a and b; recall that
� 1 D a=4a C b5. Substituting these in (4) gives an estimate
for Pr8eY ¶ 19. This constitutes the Markov chain approxi-
mation for the scan statistic p value in accord with (3). As
demonstrated by Huffer and Lin (1997), this approximation is
remarkably accurate considering its crudeness. However, their
demonstration (by way of simulation) was limited to appre-
ciably larger sample sizes (n D 1001 1000) than are typi-
cally encountered with translocation breakpoint studies. In the
present circumstance for TEL–AML1, we have n D 24 and
w µ 21 (because the approximation is restricted to k > 3 break-
points), so there is less basis for appealing to Markov chain
stationarity. Although limited simulations for this sample size
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again indicate that the Markov chain (and compound Poisson)
approximations are very accurate, to avoid relying solely on
moment-based approaches we next consider alternative large-
deviation approximations for Pr8Nd ¶ k9.

Loader (1991) considered both one- and two-dimensional
scan statistics and also distinguished between d known and
unknown. Here we brie� y summarize results for the known
d case. Although details of the more complicated unknown d

case are deferred to Loader (1991), we do apply the corre-
sponding approximations in Section 3.

The � rst large-deviation approximation, which is compu-
tationally easy and accurate in the upper tail for a range of
sample sizes, n, and interval lengths, d, is

Pr8Nd ¶ k9 D n˜b4k3 n1 d5 1C o415
¢
1 (7)

where ˜ D 4k ƒ nd5=nd and b4k3 n1 d5 is the binomial prob-
ability mass function. We require ˜ > 0 and so need k > nd,
the expected number of breakpoints in an interval of length
d under uniformity. In evaluating TEL and AML1 breakpoint
clustering we use an endpoint corrected version of (7). The
resultant approximation (Loader 1991, eq. 11) is

Pr8Nd ¶ k9 n˜b4k3 n1 d5 C
nX

jDk

b 4j3 n1 d5

C
kƒ1X

jD0

³
1 ƒ d ƒ ˜d

1 C ˜ ƒ d ƒ ˜d

2́4kƒj5

b4j3 n1 d51 (8)

where ˜ and b4k3 n1 d5 are as before. In our one-dimensional
applications where d is small, the correction afforded by (8) is
slight. This contrasts with the example considered by Loader
(1991) and the two-dimensional examples that follow where,
with d large, corrections are appreciable.

2.2 Multiplicity: Number of Clusters/Modes

Wiemels et al. (2000) used average kNN distances (k D
11 : : : 15) to assess overall cluster signi� cance. But if cluster-
ing is deemed signi� cant, then this approach does not pro-
vide estimates of cluster location or multiplicity. To remedy
this, they turned to kernel density estimation of the frequency
distribution of clusters across the intronic region. The loca-
tion of signi� cant modes (clusters) is established by simula-
tion. Repeated breakpoint samples of size equal to the origi-
nal are independently drawn from a uniform distribution over
the intronic breakpoint region, kernel density estimates are
computed for each sample, and a pointwise 95% envelope
is obtained from the 95th percentile of the density estimates
at each base pair (position) within the region. The results
of this procedure are reproduced in Figure 2. The approach
uses a priori � xed bandwidths. This is a serious shortcoming,
because the arbitrarily prescribed bandwidths will have a pro-
found effect on the identi� cation of signi� cant modes, as evi-
dent from considering the implications of very large or very
small bandwidth selections.

By way of contrast, Figure 3 displays kernel density esti-
mates for TEL and AML1 breakpoints using so-called “second
generation” (Venables and Ripley 1999) bandwidth selection
rules due to Sheather and Jones (1991). For TEL, bandwidths

from either their “solve-the-equation” (STE) (8099 bp) or
“direct plug-in” (DP I) (8080 bp) rules are suf� ciently close
so that the resultant densities almost coincide. This density
[Fig. 3(a)] is clearly unimodal. The bandwidths are more than
eight times larger than the bandwidth of 1000 bp used by
Wiemels et al. (2000). However, for AML1, we obtain respec-
tive bandwidths of 56,792 (STE) and 82,829 (DP I), with the
former supporting three modes and the latter supporting only
two modes. Viewing the number of modes as a function of
bandwidth is central to Silverman’s bandwidth test approach,
which is described in Section 2.2.1. Whichever selection rule
is adopted, the estimated bandwidth is appreciably greater than
that of 2000 bp used by Wiemels et al. (2000).

The question of determining the number of modes in a den-
sity has received considerable attention, with Silverman (1981)
providing an easy prescription for answering it. A perhaps
more subtle question is whether detecting clusters in data coin-
cides with detecting modes in underlying densities. Silverman
(1986) asserted that these are “somewhat indistinct notions
with a slight difference in emphasis,” whereas the Panel on
Discriminant Analysis, Classi� cation, and Clustering (1989)
contended that we can “test for the presence of clustering by
testing for multimodality.” This latter equivalence is implicit
in some of the theoretic results of Tibshirani et al. (2001)
described in Section 2.2.2.

2.2.1 Silverman’s Bandwidth Test. Here we provide a
brief overview of Silverman’s bandwidth test procedure for
determining the number of modes (see Izenman and Somner
1988 and Efron and Tibshirani 1993 for additional description
and applications). Let N 4f5 be the number of modes of a den-
sity f . Consider a series of hypotheses such that the jth null
hypothesis, H

j

0 , is that f has at most j modes (H j

0 2 N 4f 5 µ j),
whereas the jth alternative, H

j

1 , is that f has more than j

modes (H j

1 2 N 4f 5 > j). Let Ofh be a kernel density estimate
with bandwidth h. De� ne hj

D inf8h 2 N 4 Ofh5 µ j9. Silverman
(1981) showed that for Gaussian kernels, N 4 Ofh5 is a right-
continuous, decreasing function of h so that N 4 Ofh5 > j , h <
hj . Thus hj is a natural test statistic for testing H

j

0 versus H
j

1 .
To determine hj , we count the modes in density estimates Ofh

for varying h. When h D hj , Ofhj
will have j modes plus a

noticeable shoulder [i.e., the shoulder in Fig. 3(b)]. We have
that

Prf 8hj > h9 D Pr8N 4 Ofh5 > j—X11 : : : 1Xn f 90 (9)

Using bootstrap resampling, we can readily evaluate the right
side of (9), because there is no need to recalculate hj for
each bootstrap replicate. The bandwidth test is implemented
as follows:

1. Draw a bootstrap sample X ü
1 1X ü

2 1 : : : 1X ü
n from the

breakpoint data X11X21 : : : 1 Xn.
2. Obtain a smooth bootstrap sample Y ü

1 1 Y ü
2 1 : : : 1 Y ü

n by
Y ü

i
D cj4X

ü
i

Chj ˜i51 i D 1121 : : : 1 n, where ˜i iid® 40115

and cj
D 41 C 4hj =var4X5525ƒ1=2 is a scale factor such

that var4Y ü 5 D var4X5.
3. From Y ü

1 1 Y ü
2 1 : : : 1 Y ü

n , compute a kernel density estimate
Of ü using bandwidth hj .

4. Repeat steps 1–3 B times, yielding Of ü b1 b D 1121 : : : B.
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Figure 3. Breakpoint Density Estimates Using Sheather–Jones Bandwidths. (a) TEL breakpoints: The densities using either the DPI rule or the
STE rule coincide. (b) AML1 breakpoints: In addition to the DPI and STE estimates, the density corresponding to h2 D 64, 752 is displayed.
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5. The achieved signi� cance level for testing H j

0 versus H j

1

is 41=B5
PB

bD1 I8N 4 Of ü b5 > j9.

Step 2 corresponds to sampling from Ofhj
, the (scaled) convo-

lution of the empiric distribution function and a standard nor-
mal distribution function. This is appropriate for testing H

j

0

versus H
j

1 , because Ofhj
represents a plausible j mode density

that is closest to j C 1 modal. The procedure is computation-
ally straightforward. As described by Silverman (1983) and
Cheng and Hall (1998), it is also conservative. For this reason,
and also because the bandwidth test procedure does not read-
ily generalize to more than one-dimensional data (see Sec. 4),
we next consider an alternative approach to determining the
number of clusters. In Section 4 we brie� y comment on a
re� nement of the bandwidth test that allows for local (vary-
ing) bandwidths (Minnotte 1997).

2.2.2 Gap Statistic. Tibshirani et al. (2001) developed
the gap statistic as an adjunct to a clustering algorithm to for-
malize the “elbow” heuristic; in graphs plotting a (pooled)
within-cluster error measure versus the number of clusters,
there is (often) a characteristic kink or elbow, the location of
which represents the appropriate number of clusters. (For an
application of this heuristic, see Segal 1988.) As documented
by Tibshirani et al. (2001), the many merits of the gap statis-
tic include (a) strong theoretic underpinnings in one dimen-
sion (pertinent to translocation breakpoints), (b) applicability
to any clustering algorithm in arbitrary dimensions, (c) easy
implementation, and (d) excellent performance in extensive
simulations.

Let dii0 be the distance between observations i and i0.
In both our one- and two-dimensional applications, we use
just the (Euclidean) distance between the breakpoints. Sup-
pose that our clustering algorithm has generated m clusters,
C11C21 : : : 1Cm, with Cr denoting the indices of the obser-
vations in cluster r and nr

D —Cr
— the cluster size. Let Dr

DP
i1i02Cr

dii0 and Wm
D Pm

rD1 Dr =2nr . If d is squared Euclidean
distance, then Wm is the pooled within-cluster sum of squares
around cluster means. The central idea of Tibshirani et al.
(2001) is to compare log4Wm5 to its expectation under an
appropriate null referent distribution. They showed that in one
dimension, µ40115 is most likely to produce spurious clusters
(operationalized as single-component log-concave densities,
which is analogous to equating clusters with modes as earlier)
and so constitutes an appropriate null referent distribution. We
apply choices for the more ambiguous higher-dimensional set-
ting in Section 2.3.

The gap statistic is then de� ned as

gapn4m5 D E ü
n4log4Wm55 ƒ log4Wm51 (10)

where E ü
n denotes expectation under a sample size of n from

the null referent distribution; the sample size must be pre-
scribed in view of the adaptive nature of many clustering algo-
rithms. Motivation for (10) was provided by Tibshirani et al.
(2001). The optimal number of clusters Om is determined by
maximizing gapn4m5 after accounting for sampling variation
by using a “one standard error rule” akin to that in CART
(Breiman, Friedman, Olshen, and Stone 1984). The statistic

itself is computed as follows:

1. Using the chosen clustering algorithm, cluster the
observed data varying the total number of clusters (m D
11 21 : : : 1 M ) giving within-dispersion measures Wm.

2. Generate B reference datasets using the uniform distri-
bution. Repeat step 1 on each, giving within-dispersion
measures W ü

mb1 m D 1121 : : : 1M1 b D 11 21 : : : 1 B.
3. For each m, compute the estimated gap statistic

gap4m5 D 41=B5
P

b log4W ü
mb5 ƒ log4Wm5.

2.3 Two-Dimensional Clustering

As depicted in Figure 1, breakpoint data are paired, with
each patient having breakpoints within both the TEL and
AML1 intronic regions. Wiemels et al. (2000) examined
whether there is corresponding two-dimensional clustering by
extending their averaged nearest-neighbor methods. They also
were concerned with independence of TEL and AML1 break-
points. This was pursued by discretizing � fth nearest-neighbor
distances and using contingency table methods, a seemingly
oblique and inef� cient approach. We directly evaluate break-
point correlation with attendant nonparametric BCa 95% boot-
strap con� dence intervals (Efron and Tibshirani 1993).

With regard to clustering, some of the aforementioned
approaches generalize to two dimensions, whereas others do
not. The gap statistic readily handles arbitrary dimensions.
However, as demonstrated by theorem 2 of Tibshirani et al.
(2001), unlike in the one-dimensional case, here there is no
longer a generally applicable, least favorable referent distri-
bution. This re� ects the need to accommodate the “shape”
(i.e., covariance structure) of the data at hand. As an ad hoc
means of achieving this, for step 2 of the procedure given in
Section 2.2.2, they proposed generating independent uniform
margins over the principal components of the data. This is
effected using the singular value decomposition. In our set-
ting of n patients contributing paired breakpoint data, this
works as follows. Designate the n� 2 matrix of breakpoints X.
Sweep out the column means and compute the singular value
decomposition X D UDV T . Then transform via X? D XV and
draw independent uniform margins Z? over the column ranges
of X?. Finally, create reference data by backtransformation,
Z D Z?V T . By way of contrast, we also investigate ignoring
shape information and obtaining reference data by simply gen-
erating independent uniform margins for each dimension.

Extending Silverman’s bandwidth test procedure is prob-
lematic because the absence of order in R2

C precludes relat-
ing N 4 Ofh5 to bivariate kernels with bandwidth h D 4h11h25. In
the related setting of testing unimodality, Hartigan and Harti-
gan (1985) proposed using minimal spanning trees to impose
order in two or more dimensions. It is unclear whether such
an approach is practicable for the bandwidth test.

The scan statistic itself is readily generalized to two dimen-
sions, albeit with the constraint that the cluster regions eval-
uated are rectangles. Let Xi

D 4Xi11Xi25, x D 4x11 x25 and
d D 4d11d25 and de� ne Nx1xCd as the number of Xi in the
region 4x11 x1

C d15 � 4x21 x2
C d25. Then the scan statistic is

Nd1 1d2
D sup

x11 x2

Nx1xCd 0 (11)
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By de� ning a convenient ordering, Loader (1991) obtained
two-dimensional distributional approximations. The main
result is

Pr8Nd11d2
¶ k9 D n2d1d241ƒ d1541ƒ d25˜

3

41ƒ d1d25
341C ˜5

� b4k3 n1 d1d2541C o41551 (12)

where now ˜ D 4kƒnd1d25=nd1d2 and b is the binomial prob-
ability mass function as earlier. Again, requiring ˜ > 0 restricts
to k > nd1d2, the expectation under uniformity. Loader (1991)
also provided edge corrections that improve accuracy, at least
for select d1 and d2, and generalization to the unknown d1 and
d2 case. In the next section we apply both of these extensions
in evaluating clustering of paired TEL–AML1 breakpoints.

3. RESULTS

3.1 One-Dimensional Clustering:
Univariate Breakpoints

Considering TEL and AML1 breakpoints separately, and
using average kNN statistics for k D 11 : : : 15, Wiemels et al.
(2000) obtained (via Monte Carlo simulation) signi� cant indi-
cations of clustering for k D 31 4 (TEL) and k D 21 415
(AML1) (see their table 1). In both cases, combining over k

and correcting for multiple comparisons was used to declare
the presence of signi� cant overall clustering. The locations of
the clusters, along with accompanying claims of signi� cance,
were then determined via kernel density estimation in accor-
dance with Figure 2.

For the reasons presented in Section 2.1, we reevaluate
these clusters using scan or minimum kNN statistics. The
identi� ed clusters furnish the quantities d and k, permitting
approximate p value determination using large deviations (8)
or the moment-matching schemes in conjunction with (3) as
described in Section 2.1. The results are presented in Table 1.
The cluster index (� rst column) for TEL and AML1 cor-
responds to the respective clusters identi� ed and labeled in
Figure 2. We see that only the second AML1 cluster emerges
as signi� cant, with marginal results for the second TEL clus-
ter and third AML1 cluster. For the moment approxima-
tions, evaluation of the third and fourth AML1 clusters made

Table 1. Scan Statistic p Values

Approximation method

Markov Compound Large
Cluster chain poisson deviation

TEL Breakpoints
1 0585 0588 0716
2 0097 0097 0097
3 0325 0327 0347

AML1 Breakpoints
1 0423 0424 0480
2 0021 0021 0021
3 0126 ü 0126 ü 0195
4 0526 ü 0526 ü 0526 ü

ü Obtained via simulation (see text).

recourse to simulation based on the minimum kNN formu-
lation, because, as previously mentioned, the approximations
for such small clusters are not available. Similarly, the large-
deviation approximation breaks down for the fourth cluster.
The agreement among the approximations is good, especially
for small tail probabilities. This is consistent with the simula-
tion results of both Huffer and Lin (1997) and Loader (1991).

When applying the scan statistic in this fashion, it is impor-
tant to note that the parameter d has been speci� ed to cor-
respond exactly to the clusters identi� ed by Wiemels et al.
(2000). Treating d as unknown and optimizing using the like-
lihood ratio test approach of Loader (1991) gives the follow-
ing results. For TEL breakpoints, the most signi� cant clus-
ter consists of the � ve breakpoints labeled 13–17 in the top
panel of Figure 1(a) and Figure 2(a), with a large-deviation p

value of .12. That this exceeds the p value for the overlap-
ping second TEL cluster in Table 1 is because of accommo-
dation of the adaptation involved in � nding the optimal d. For
AML1, the optimal cluster consists of the eight breakpoints
labeled 14, 9, 2, 15, 17, 1, 12, and 20 in Figure 2(b), with a p
value of .0095. By combining clusters 2 and 3 from Table 1,
a more signi� cant result is obtained, even when allowing for
optimization.

Results obtained from applying Silverman’s bandwidth test
for determining the number of modes are presented in Table 2.
For TEL, the critical bandwidth for testing H 1

0 (at most one
mode) versus H 1

1 (two or more modes) is h1
D 6401, with

a corresponding p value of .4, so we terminate the series of
hypothesis tests and conclude that the data are unimodal, con-
sistent with Figure 3(a). For AML1, however, we reject H 1

0 in
favor of H 1

1 —the critical bandwidth h1
D 1511383 being com-

parable to the range of the AML1 breakpoints (167,611)—and
proceed to evaluate H 2

0 (at most two modes) versus H 2
1 (three

or more modes). Here we obtain a marginal result (p D 0073)
and so, in accordance with the recommendations of Izenman
and Somner (1988), continue testing. Note that the critical
bandwidth h2

D 641752 interpolates the Sheather–Jones band-
widths (56,792 for STE; and 82,829 for DP I), as is apparent
from the densities in Figure 3(b). The density corresponding
to h2 has a shoulder, which on further bandwidth decrease
would give rise to a (third) mode as exempli� ed by the STE
density.

Gap statistics results for m D 11 : : : 1 5 are presented in
Figure 4. The Om values obtained for TEL and AML1 are
Om D 1 and Om D 3. Thus the gap statistic suggests that a single

cluster/mode is indicated for TEL breakpoints, whereas three
clusters are indicated for AML1 breakpoints.

Table 2. Bandwidth Test Results

Critical
Number of modes bandwidth p value

TEL Breakpoints
1 6401 0405

AML1 Breakpoints
1 151383 0001
2 64752 0073
3 35207 0395
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Figure 4. Gap Statistic Estimates and Standard Errors for TEL Breakpoints and AML1 Breakpoints. These have been jittered for clarity.

So, synthesizing results from the various approaches to
appraising one-dimensional clustering, we see consistency
with regard to TEL breakpoints; a single cluster/mode is all
that is supported. The situation is less clear with regard to
AML1 breakpoints, with the scan statistic con� rming only
one of the four clusters identi� ed by Wiemels et al. (2000),
Silverman’s bandwidth test suggesting two (possibly three)
clusters, and the gap statistic indicating three clusters. The lat-
ter disparity is perhaps attributable to the cited conservatism
of the bandwidth test procedure. We had thought that further
reconciliation of these results could be obtained by reevalu-
ating the scan statistic for the clusters identi� ed by the other
approaches. This is because most of the clusters identi� ed by
the Wiemels et al. (2000) kernel density estimation proce-
dures were small due to the small prescribed bandwidths and
hence potentially specious. However, this reevaluation did not
change the picture (irrespective of the scan statistic approx-
imation method used); only the eight breakpoints previously
itemized as yielding the best cluster when optimizing over d

emerged as a signi� cant cluster. We discuss these discrepan-
cies between approaches in more general terms in Section 4.

3.2 Two-Dimensional Clustering:
Bivariate Breakpoints

Interestingly, TEL and AML1 breakpoints are not corre-
lated: � D ƒ0036, 95% nonparametric bootstrap BCa inter-
val (ƒ.72, .31). However, this obviously does not imply
an absence of bivariate clustering. We commence evalua-
tion of two-dimensional clustering by applying the gap statis-
tic. Whether we use referent data based on uniform margins
with or without transforming according to the singular value
decomposition, we obtain the same result as to the optimal

number of clusters: Om D 3. This equivalence is not surprising
in view of the aforementioned lack of dependence. Further-
more, the resultant three clusters (as determined using various
algorithms with Euclidean distances) coincide with clusters
based on AML1 alone; see Figure 5 and note the extensive
range of within-cluster TEL breakpoints.

The three clusters so identi� ed were used as a basis for pre-
scribing interval lengths 4d11 d25 for the two-dimensional scan
statistic (11), the signi� cance of which was assessed using
the edge-corrected re� nement of (12). None of the clusters
attained signi� cance, with respective p values of .24, .22, and
.72. As described in Section 4, this disparity likely re� ects
the global nature of the gap statistic. It remains possible that
optimizing the choice of 4d11 d25 would detect a signi� cant
cluster. Using the result in theorem 3.2 of Loader (1991), we
obtain a p value of .005 for optimized 4d11d25 corresponding
to the four boxed breakpoints in Figure 5. The very small size
of this and the closest suboptimal clusters (k D 3) makes their
biological meaning questionable.

4. DISCUSSION

As delineated in Section 2, the three methods used differ
with respect to establishing the existence of a cluster (scan
statistic) versus determining the number of clusters (bandwidth
test, gap statistic). This is re� ected in the extent to which the
methods are global (i.e., use all of the data) or local (i.e., effec-
tively condition on individual clusters). The gap statistic is the
most global approach, because it is based on an exhaustive
and exclusive clustering of all breakpoints, implicit in step 1
of the algorithm outlined in Section 2.2.2. Thus the gap statis-
tic estimates Om D 3 AML1 clusters, despite the fact that only
one of these is signi� cant by the scan statistic, because this
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Figure 5. Bivariate Breakpoint Clustering. Breakpoints are plotted as numerals, designating which of the three gap statistic–derived clusters
they belong to. The dashed box contains the cluster deemed optimal by using the two-dimensional scan statistic with unknown ( d1, d2) (see text).

provides the optimal number of groups [according to (10)]
for partitioning all of the breakpoints. The gap statistic is not
designed to identify individual clusters.

Conversely, the scan statistic that is so designed is the
most local approach. Given an optimal cluster (in either the d

known or unknown case), it is only the number, not the distri-
bution, of points outside that cluster that affects signi� cance.
Silverman’s bandwidth test is an intermediate approach. A
more local version resulting from use of variable bandwidth
smoothing has been developed by Minnotte (1997). Applica-
tion of his companion software gave results (not shown) com-
parable to the scan statistic: a single signi� cant mode for each
of TEL and AML1.

In light of these distinctions, we view the scan statistic as
the frontline method for evaluating clustering of transloca-
tion breakpoints. This is because the underlying biologic inter-
est is in identifying (and subsequently validating/testing) local
regions susceptible to breakage. The exhaustive clustering of
all breakpoints is not an objective in this context. Nonetheless,
the gap statistic and bandwidth test provide useful comple-
ments. By identifying the collection of modes, the bandwidth
test procedure can pinpoint suboptimal clusters (secondary
modes) for evaluation via the scan statistic. In two dimensions,
where the bandwidth test is unavailable and the scan statis-
tic is limited to appraising rectangular regions (Loader 1991),
the gap statistic is useful for initial identi� cation of potential
clusters.

As illustrated, the utility of the scan statistic is greatly
enhanced by the availability of accurate approximations. It
is the case, however, that because of the small sample sizes
encountered with translocation breakpoint studies and the fact
that data are at most two dimensional, evaluation of signi� -
cance simply by recourse to simulation is straightforward, thus
obviating the need for approximations. This is especially perti-
nent with respect to the Huffer and Lin (1997) moment-based
approximations, the implementation of which are reliant on
the symbolic mathematics package MAPLE.

In settings where an exhaustive clustering of all objects is
desired, we believe that the gap statistic has merit in view of
the properties previously itemized. For example, the analysis
of cDNA microarray data has made extensive use of a variety
of such clustering algorithms. A number of ad hoc procedures
for determining the number of clusters have emerged: (see,
e.g., Bittner et al. 2000). The easily implemented gap statistic
provides a compelling addition.

Tempering all results here are questions of power for the
clustering/multimodality tests used. Such issues, which arise
in general, are especially pertinent in the context of breakpoint
studies in view of the typically small sample sizes and dif-
� culties in specifying alternatives given the broad competing
hypotheses outlined in Section 1. This latter aspect limits even
simulation-based assessments. Additionally, the speci� cation
of appropriate null distributions is also uncertain, as exempli-
� ed by the discussion in Section 2.3 and the work of Cheng
and Hall (1998) and Minnotte (1997). The only mitigating



76 Journal of the American Statistical Association, March 2002

aspect to these concerns is the prospect of larger future studies
resulting from more readily implemented assays.

The emergence of potential clusters for both TEL and
AML1 invites further exploration via investigation of the asso-
ciated motifs, as described in Section 1, to assess whether
these motifs are elsewhere associated with translocation and
gene fusion. A further consequence of cluster validation will
be the development of directed PCR assays to more rapidly
identify breakpoints for treatment follow-up studies. Our cur-
rent inverse PCR methods are far too cumbersome for rou-
tine clinical use. A more routine translocation sequencing
assay that targets clusters would allow the use of these break-
points as clonotypic markers of the leukemic cell for follow-up
assays of “minimal residual disease” in treated patients. Such
analysis has proven highly useful in predicting relapse and
tailoring therapy. Development of such a DNA-based assay
would represent an important advance over the current state-
of-the art assays, which are based on mRNA fusion transcripts
and are inherently unstable and dif� cult to work with in clin-
ical laboratories.

[Received November 2000. Revised October 2001.]
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