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Abstract

Objective: Evaluate peripheral blood lymphocyte proliferation (replicative index:RI) and micronuclei frequency
(MF) among 2,4-D herbicide applicators.
Methods: Twelve applicators spraying only 2,4-D provided a blood and urine specimen upon enrollment, several
urine samples during the spraying season, and a blood specimen at the study's end. Nine controls provided blood
and urine specimens upon enrollment and at the study's end. Gas chromatography/tandem mass spectroscopy
determined urinary 2,4-D levels and standard in-vitro assays determined RI and MF scores. Applicator RI and MF
were compared before and after spraying and with controls.
Results: Applicators contributed 45 urine specimens with concentrations ranging from 1.0 to 1700 (lg 2,4-D/g
creatinine/L urine) that logarithmically (ln) increased as spraying time increased. Applicator RI increased after
spraying (p = 0.016), independent of tobacco and alcohol use, and demonstrated a weak dose±response with
increasing urinary 2,4-D levels (p = 0.15). Among 2,4-D applicators, pre-exposure complete blood counts and
lymphocyte immunophenotypes were not signi®cantly di�erent from post-exposure measurements.
Conclusion: Urinary 2,4-D concentration, an exposure biomarker, may be associated with lymphocyte replicative
index, a cell proliferation biomarker.

Introduction

2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most
widely used postemergence pesticides in theUnited States
[1] that acts by disrupting hormone balance and protein
synthesis to cause a variety of plant growth abnormal-
ities. Although, 2,4-D does not appear to cause cancer in
rodent bioassays [2], associations with non-Hodgkin's
lymphoma have been observed in some [2±6], but not all
[7, 8] epidemiologic studies. Animal studies have shown
that 2,4-D has a number of biological e�ects [9±18], but a
possible carcinogenic mechanism(s) is not obvious in
mammals [19±22]. Humans primarily excrete unmodi®ed
herbicide in their urine, suggesting few metabolic
intermediates [23]. To provide information on possible

inconsistencies between epidemiologic data and biologic
e�ects in humans, we conducted a pilot study of 12
herbicide applicators who exclusively sprayed 2,4-D
from April to July 1994 to investigate the relationship
between urinary 2,4-D levels and lymphocyte prolifer-
ation rates [24] and micronuclei frequencies [25±27].

Materials and methods

Study subjects

Study participants were 13 herbicide applicators from
county noxious weed o�ces in eastern Kansas, aged 17±
56, who had no cancer history and no occupational
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pesticide exposure 6 months prior to 1 March 1994, and
12 non-applicators. County noxious weed o�ces are
charged with controlling troublesome agricultural weeds
(e.g. bindweed, wormwood, snakeweed, thistle, knap-
weed, larkspur, leafy spurge, locoweed, lupine, iron-
weed, skeleton weed) on public and private land. These
pesticide applicators use only herbicides and often spray
on a daily basis. Participants completed a questionnaire,
maintained a daily activity log, and provided blood and
urine samples. Subjects were monitored for 12 weeks or
until 2,4-D use was discontinued, whichever came ®rst.
Pesticide applicators received $250 and non-applicators
received $50 remuneration at the study's end. Shortly
after enrolling, one applicator relocated to a nonpartic-
ipating county, changed occupations, and withdrew
from the study.
Non-applicators were solicited by word-of-mouth

and newspaper advertisements. We excluded persons
with previous or current cancer medical histories,
persons taking prescribed medications, or persons with
current disease histories that might interfere with
laboratory assays. Of the 150 subjects screened, nine
controls were selected and matched to applicators by
gender, 5-year age group, alcohol and tobacco use, and
geography (preference was given to non-applicator
county employees working in or adjacent to an appli-
cator's county of employment). Each control subject
received $50 remuneration.
All participants signed informed-consent documents

that were approved by the Human Subjects Review
Committees of the National Cancer Institute and the
University of Kansas Medical School.

Questionnaires and daily diary

All applicators and matched controls completed a 40-
minute, in-person, enrollment questionnaire to collect
health and employment history data. Applicators also
responded to a 15-minute post-study questionnaire to
determine changes in health status, habits, or occupa-
tional history. Applicators also kept daily work diaries
to record task, task duration, pesticide use, and personal
protective equipment use during the 2,4-D spraying
season.

Biological specimen collection, processing,
and assay methods

Baseline blood and single-void urine specimens were
collected at enrollment from applicators and controls. In
addition, overnight urine samples were obtained from
applicators every other week following a typical day of
2,4-D application.

To insure that the urine was properly collected and
not contaminated, participants were trained to ®ll
containers without touching the urine stream to clothing
or hands. Applicators were instructed to urinate at 6:00
p.m. and collect all urine thereafter, including the ®nal
urine before reporting for work the next day. To retard
bacterial growth, subjects stored overnight urine collec-
tions in a single plastic container in a refrigerator at
home and transported the urine to the worksite in an
ordinary Thermos7Ò cooler ®led with ice packs. Study
technicians provided participants with new supplies as
needed and prepared the urine specimens for transport
to the laboratory. Upon receiving urine specimens,
study technicians immediately pipetted 20 ml into each
of two 25 ml glass serum vials (Wheaton), capped the
vials with Te¯onÒ stoppers, and sealed each with
aluminum retainers. Each vial was immediately placed
on dry ice and transported frozen to the University of
Kansas Medical Center laboratory in Kansas City,
Kansas. After determining the total volume, the un-
frozen urine was discarded. All frozen samples were
stored at )80 °C and were shipped on dry ice to the
Centers for Disease Control and Prevention for labora-
tory analyses at the end of the spraying season. To
maintain stability, samples were thawed as needed.
Baseline urinary 2,4-D estimates were determined

from pooled urine that contained two enrollment,
single-void urine samples selected randomly from appli-
cators and controls, respectively.
Urinary 2,4-D analyses followed procedures described

by Hill et al. [28]. Frozen urines were thawed, 10 ml
urine aliquots were prepared and C13 labeled 2,4-D was
added as an internal standard. Enzyme hydrolysis,
derivatization, clean-up and concentration to 100 ll
(microliters) followed. Urine 2,4-D measurements were
made using capillary gas chromatography combined
with tandem mass spectrometry (GC/MS/MS) employ-
ing collision-associated decomposition of parent to
daughter ions. Quality assurance methods included
retention time evaluation, ion ratios, and controls with
known 2,4-D concentrations. Long-term sample storage
was similar to conditions described elsewhere [28] for
quality control samples measured several times over a
33-month analysis period to determine if 2,4-D concen-
trations remained within the experimental error of the
method (6.2 lg/L (ppb) � 8.7% (CV)). The detection
limit for 10 ml urine samples was 1 lg/L (parts per
billion). All 2,4-D concentrations were creatinine
adjusted (lg/g creatinine/L urine).

Blood specimen collection and processing
Typically, all blood specimens were collected between
6:00 a.m. and 10:00 a.m. in 10 ml, green top vacutainer
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tubes and appropriately packaged for overnight
shipment and delivery. For the replicative index/micro-
nucleus assay, lymphocytes were isolated using Ficoll-
Paque (Pharmacia, Piscataway, NJ) density gradients
and cultured [26]. Brie¯y, blood was diluted 1:1 with
phosphate bu�ered saline (PBS), layered onto Ficoll-
Paque with a ratio of cells + PBS:Ficoll-Paque main-
tained at 4:3, and centrifuged at 170g for 35 minutes at
room temperature. The lymphocyte layer was removed,
washed twice in PBS at 150±170g for 10 minutes each,
and then washed with RPMI 1640 media. A hemocy-
tometer was used to achieve an initial culture density of
1 ´ 106 cells in 2.0 ml of culture medium. Culture
medium consisted of RPMI 1640 supplemented with
10% fetal bovine serum (Hyclone, Logan, UT), 2 mM

L-glutamine, 100 units/ml penicillin, 100 lg/ml strepto-
mycin (Gibco, Grand Island, NY) and 1.5% phyto-
hemagglutinin (PHA, HA15, Burroughs-Wellcome,
Greenville, NC). The lymphocyte cultures were grown
in a humidi®ed incubator with 5% CO2 at 37 °C in
15.0 ml conical polystyrene centrifuge tubes. Cytochala-
sin B (Sigma, St Louis, MO) (5.0 lg/ml) was added to
lymphocyte cultures at 44 hours post-initiation as de-
scribed by Fenech and Morley [27]. Cytochalasin B
prevents complete cytokinesis, which results in multinu-
cleated cells. At 72 hours, lymphocytes were spun directly
(48 g, 10 minutes) onto glass slides using a cytocentrifuge
(Shandon, Sewickley, PA). Slides were air-dried before
®xing with methanol at room temperature for 15
minutes. Slides were stored at )20 °C in a sealed box,
desiccated, under a N2 atmosphere. Cell division kinetics
were calculated by scoring at least 400 cells per sample
(200 cells per duplicate), by counting the percent of cells
containing one, two, three or more nuclei per individual.
A replicative index (RI) was calculated as follows:

RI � f1�% mononuclear cells�
� 2�% binuclear cells�
� 3�% trinuclear cells�
� 4�% tetranuclear cells� � � � �g=100:

Antikinetochore antibody staining procedures fol-
lowed those described by Eastmond and Tucker [29].
Methanol-®xed slides were incubated for 5 minutes in
PBS containing 0.1% Tween 20. Excess ¯uid was
drained from slides and 40±50 ll of the antikinetochore
antibody (Chemicon, Temecula, CA) diluted 1:1 with
PBS containing 0.2% Tween 20 was applied. The slide's
working surface was covered with a glass coverslip and
placed in a humidi®ed chamber at 37 °C for 1 hour.
Following two washes in PBS containing 0.1% Tween
20 for 5 minutes each, excess ¯uid was again drained,
slides were covered with a 1:50 dilution of ¯uorescent

goat anti-human IgG (Chemicon, Temecula, CA), and
incubated again for 1 hour. Because ¯uorescent-labeled
antibodies fade upon exposure to light, this and all
subsequent steps were conducted in yellow light. The
slides were rinsed twice in bu�er plus 0.1% Tween 20
and counterstained with DNA-dye 4¢,6-diamidino-2-
phenylindole (DAPI) (2 lg/ml) in an antifade solution
[30]. Slides were refrigerated for up to a week prior to
microscopic examination.
Randomized and coded slides were scored using a

Nikon microscope equipped with epi¯uorescent illumi-
nation and ®lters for ¯uorescein (excitation at 470 nm,
dichroic at 510 nm, barrier at 520±560 nm) and quina-
crine (excitation at 400±440 nm, dichroic at 450 nm,
barrier at 470 nm). At least 1000 binucleate lymphocytes
(those that have undergone one mitotic division) were
scored for the number of micronuclei. When a micronu-
cleus was located using the quinacrine ®lter, the presence
or absence of kinetochore staining was determined by
switching to the ¯uorescent ®lter. Scoring criteria were as
follows: (1) cells appeared round or oval with an intact
cytoplasm, (2) nuclei appeared round or oval with an
intact nuclear membrane, (3) cells having undergone one
nuclear division were scored for the presence of micronu-
clei, (4) micronuclei had to be one-third or less the size of
the main nuclei, (5) micronuclei were stained similar to
the main nuclei, and (6) micronuclei were clearly sepa-
rated from the main nuclei. Two scorers performed
scoring with 10% of slides being rescored. A third scorer
additionally assessed all questionable micronuclei.
Other laboratory analyses included lymphocyte phe-

notypes and complete blood counts (CBC). Lymphocyte
phenotypes were determined by ¯ow cytometry using
two-color immuno¯uorescence and a whole-blood stain-
and-lyse method [31] under guidelines approved for
clinical laboratory analyses [32]. The CBC was per-
formed to determine leukocyte type and number to
assess immune function and to characterize erythrocyte
size, shape, and number for signs of anemia. Total white
blood cells, lymphocytes, monocytes, granulocytes (eo-
sinophils and basophils), and erythrocytes were counted
in each blood sample. Hemoglobin, hematocrit, mean
corpuscular volume, mean corpuscular hemoglobin,
mean corpuscular hemoglobin concentration, red cell
distribution width, and platelet count were estimated.
All determinations were made using standard methods
with a Coulter counter (Beckman Coulter, Inc., Full-
erton, CA 92834, USA).

Statistical Analyses

Our design compared pre-exposure (baseline) measure-
ments with post-exposure measurements of the applica-
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tors and post-exposure measurements of applicators
with non-applicators controls. Means were presented
with standard deviations (mean � SD) unless otherwise
indicated. Urinary 2,4-D concentrations were time
adjusted (mean 2,4-D concentration/mean hours spray-
ing 2,4-D) where indicated. Paired t-test analyses,
strati®ed by tobacco use history or alcohol use, com-
pared micronuclei and replicative index scores before
and after 2,4-D application. An independent sample
(unpaired) t-test was used to compare applicator mi-
cronuclei and replicative index scores with non-applica-
tor controls. A non-parametric test [33] was used to test
for a trend of increasing replicative index scores and re-
plicative index di�erence (RIpost-exposure ) RIpre-exposure)
across three time-adjusted urinary 2,4-D concentration
groups. All statistical data analyses and tests were
performed using Stata 5.0 (Stata Corporation, 702
University Drive East, College Station, TX 77840) and
SPSS 7.5.1 for Windows (SPSS Inc., 444 N Michigan
Avenue, Chicago, IL 60611-3962).

Results

Twelve white males ranging in ages from 17 to 56 years
(mean: 27.5 � 12.5 years) were enrolled as applicators

(Table 1). Two were past users and four were current
users of tobacco. All subjects drank beer and consump-
tion ranged from 1 to 30 cans per week. Three
applicators consumed hard liquor. Nine controls, eight
white and one white-Hispanic, ranged in age from 19 to
32 with a mean of 24.7 � 4.3 years. Four non-applica-
tors used tobacco and four consumed beer.
Forty-®ve urine specimens were collected from appli-

cators following 204 spraying hours of 2,4-D and a
mean of 4.5 � 1.9 hours per specimen prior to collec-
tion. The herbicide was typically sprayed from a long,
¯exible wand attached to a truck bed reservoir. Urinary
2,4-D concentration increased as hours spent spraying
herbicide increased (Figure 1). The 2,4-D concentration
grand mean among all applicators after spraying 2,4-D
was 240 � 100 (�SE) ppb. The means among serial
urine samples from applicators taken after spraying
ranged from 12 � 5.2 pbb (n = 4) to 1285 � 336 ppb
(n = 4).
Mean micronuclei scores and replicative index scores

among applicators before and after spraying 2,4-D and
scores between applicators and non-applicator controls
are shown in Table 2. No signi®cant di�erences in
micronuclei scores were observed, but post-exposure
scores among applicators were lower (21.5%) than pre-
exposure scores and lower among applicators (17.2%)

Table 1. Comparison of pesticide applicators and controls by age, race, tobacco use, and alcohol use

Participantsa Age Tobacco use Alcohol use

Cigarettes Other Beer (cans) Liquor (shots)

1. Applicator 56 40/day Never 24/week No

2. Applicator 25 Never Never 6/week No

3. Applicator 30 Never Never <1/week No

4. Applicator 24 Never Never 6/week No

5. Applicator 20 Never 1.0 oz/day (chew) 12/week No

6. Applicator 21 Never Never 8/week No

7. Applicator 24 7/dayb 1.0 oz/week (snu�)b 12/week No

8. Applicator 26 Never 1.2 oz/day (chew) 12/week 3/week

9. Applicator 50 Never 1.5 oz/day (chew)b 30/week No

10. Applicator 17 Never Never 4/week No

11. Applicator 18 5/day 1.0 oz/day (snu�)b 6/week 3/week

12. Applicator 20 Never Never 6/week 3/week

1. Control 31 Never 1.5 oz/day (chew) 12/week No

2. Control 25 Never Never No No

3. Control 32 Never Never 10/week No

4. Control 26 Never Never No No

5. Control 22 20/day 1.0 oz/day (snu�) 2/week No

6. Control 21 Never Never 4/week No

7. Control 25 20/dayb 1.0 oz/day (snu�) No No

8. Control 23 Never 1.0 oz/day (chew)b No No

9. Control 19 Never Never No No

a All subjects were male.
b Former user.
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than among non-applicators. In contrast, replicative
index scores among applicators were signi®cantly higher
following 2,4-D exposure (p = 0.016) and higher than
non-applicators' scores (p = 0.046). A comparison of
pre- and post-exposure lymphocyte immunophenotypes
among applicators and between applicators and controls
did not show signi®cant di�erences or trends (not
shown). Categorical analyses of mean urinary 2,4-D
concentration and RI scores (Table 3) showed an
increase in RI scores as time-adjusted urinary 2,4-D
levels increased, but no statistically signi®cant trend
(p = 0.15) was observed.
The replicative index increased among applicators

after spraying regardless of tobacco and alcohol use
(Table 4). Both before and after spraying, replicative
index was higher among applicators who did not use
tobacco and among those who drank six or fewer beers
than among tobacco users or more frequent beer
drinkers. Alcohol and/or tobacco use signi®cantly
decreased replicative index scores, but because of the
considerable overlap in usage, independent e�ects of
their use could not be determined.
Among applicators, lymphocyte immunologic pheno-

types and complete blood counts (CBC) before spraying
2,4-D were not statistically di�erent after spraying 2,4-
D, nor were there signi®cant di�erences between 2,4-D
applicators and controls after applicators had sprayed
the herbicide (not shown).

Discussion

This study was conducted to evaluate several biologic
outcomes in relation to urinary levels of 2,4-D in
humans. Measurable levels of 2,4-D occurred in appli-
cators' urine but not among non-applicators. Applica-
tors' urinary 2,4-D levels increased with the number of
spraying hours, but overall were intermediate among
other occupational 2,4-D users similarly exposed [14, 15,
18, 34] and generally above population-based references
[35]. Urinary 2,4-D concentration was associated with

Fig. 1. 2,4-D Levels among urine samples grouped by spraying

duration category.

Table 2. Comparison of the micronuclei and replicative index mean

scores for 2,4-D applicators and controls

Assay n Mean (�SD)a pd

Micronuclei

Applicators

Before 2,4-D applied 12 11.6 (�2.8) 0.289

After 2,4-D applied 12 9.1 (�6.2)

Applicator vs. controls

Applicators 12 9.1 (�6.2) 0.454

Controls 9 11.0 (�4.8)

Replicative index

Applicators

Before 2,4-D applied 12 1.33 (�0.2) 0.016b

After 2,4-D applied 12 1.47 (�0.2)

Applicators vs. controls

Applicators 12 1.47 (�0.2) 0.046c

Controls 9 1.29 (�0.2)

a Replicative index score = 1 ´ %M1 + 2 ´ %M2 + 3 ´ M3 +

4 ´ M4, where Mx is the number of a cell division cycle per 1000 cells.
b Paired t-test.
c Independent sample t-test.
d p = Probability of observing applicator score di�erences before

and after spraying 2,4-D.

Table 3. Dose±response relationship between urinary 2,4-D concentration categories, mean replicative index scores, and replicative index

di�erencea among herbicide applicators

Concentration category

(mean ppb/mean

hours spraying 2,4-D)

n Mean RI

after spraying

(�SD)

Trend test

across

categories

Mean RI

di�erence (�SD)

Trend test

across

categories

<20 4 1.32 (0.21) Z = 1.44 0.05 (0.15) Z = 0.34

20±40 3 1.53 (0.17) pb = 0.15 0.20 (0.14) p = 0.40

>40 5 1.57 (0.22) 0.16 (0.18)

aReplicative index di�erence = RIbaseline)RIend of study. Trend test across categories is a nonparametric test for trend across ordered groups

developed by Cuzick [33] is an extension of the Wilcoxon rank-sum test; bp is equal to the probability of observing a value greater than |Z|.
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increased peripheral blood lymphocyte replicative index
scores, but not with micronucleus formation. The
replicative index for lymphocytes was higher among
applicators than non-applicators and it was higher
among applicators after spraying than before spraying.
Age, tobacco, or alcohol use could not explain these
di�erences. Other factors that might explain replicative
index di�erences among the exposed and unexposed are
medical and pharmacological history, previous occupa-
tional or heterogeneous occupational pesticide expo-
sures, or chance. However, we excluded unhealthy
subjects initially and upon completion of the study
(pre-existing or concurrent morbidity) and included
among controls only individuals with no previous
occupational pesticide exposure.
Changes in sister chromatid exchange and micronu-

cleus formation have been associated with other pesti-
cides [1] and replicative index changes have been
associated with aging [36±38]. Our ®ndings, while
preliminary, are the ®rst to show a relationship between
urinary 2,4-D concentration and increased replicative
index in humans. Increased replicative index scores may
be important because they suggest stimulated cell
growth that could contribute to carcinogenesis. Our
®nding of no relationship between the frequency of
micronuclei and urinary 2,4-D level does not support a
human chromosome-damage outcome at mean urinary
2,4-D levels ranging from 12 to 1285 ppb.

The link between 2,4-D function and lymphocyte
replicative index is unclear. However, as in animal cells,
plant cell growth regulatory receptor proteins may act
on plasma membrane ion channels, inositol phosphol-
ipid signaling pathways, or inside the nucleus to regulate
gene expression [39±44]. Whatever the mechanism, our
results and other recent investigations [19, 20] do not
support a genotoxic pathway.
This pilot investigation was designed to appraise

genetic and epigenetic mechanisms and orient our
interdisciplinary research regarding epidemiologic asso-
ciations between NHL and 2,4-D exposure [4] and
potential relationships between urinary 2,4-D levels,
lymphocyte proliferation rates [24], and micronucleus
frequencies [25±27]. The replicative index was used as a
measure of cell proliferation and the micronucleus assay
as a measure of 2,4-D genotoxicity. These assays were
selected because they were simple, inexpensive, and had
been e�ectively used in numerous occupational studies
[39] including a malathion study by co-investigators
Titenko-Holland and Smith [40].
The relationship between urinary 2,4-D levels and

lymphocyte proliferation observed in this pilot suggests
that a larger investigation is needed to further evaluate
the association. One challenge will be ®nding a su�-
ciently large herbicide applicator population exposed
only to 2,4-D because weeds grow sympatrically and
heterogeneous herbicide applications are typical. The

Table 4. Comparison of tobacco and alcohol use and replicative index scores among applicators and non-applicators

User group n Pre-exposure

replicative indexa
Post-exposure

replicative index

Summary

p value

2,4-D Applicator

Ever use tobacco

No 6 1.44 � 0.24 1.61 � 0.17

Yes 6 1.24 � 0.14 1.34 � 0.18

p-Valueb 0.11 0.03 0.006

Alcohol use >6 cans/week

No 6 1.49 � 0.08 1.64 � 0.06

Yes 6 1.18 � 0.02 1.32 � 0.06

p-Value 0.005 0.004 0.0001

Non-applicator

Ever use tobacco

No 4 1.28 � 0.15 n.a.

Yes 5 1.29 � 0.19 n.a.

p-Value 0.89

Alcohol use >6 cans/week

No 6 1.31 � 0.12 n.a.

Yes 3 1.24 � 0.26 n.a.

p-Value 0.56

a Replicative index score = 1 ´ %M1 + 2 ´ %M2 + 3 ´ M3 + 4 ´ M4, whereMx is the number of nuclei per cell of a cell division cycle per

1000 cells.
b Probability of observed t (test that mean di�erences are equal to zero using two sample t-test and assuming equal variances). Summary

p-value is the probability of obtaining the observed distribution of means.
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second challenge will be developing a biologically
plausible mechanistic model that describes 2,4-D's
association with diseases that involve lymphocyte
proliferation.
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