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Biomarkers can be classified into three categories: biomarkers of ex-
posure, susceptibility, and early effect. Along with colleagues from the
National Cancer Institute, the Chinese Academy of Preventive Medicine in
Beijing, the Shanghai Anti-Epidemic Center, the University of North Caro-
lina, and  other  institutions  in  the  United  States,  we  have   applied
various biomarker methods to samples obtained from workers exposed to
high levels of benzene. The goal of these studies is to develop and validate
(1) biomarkers of exposure to benzene, such as albumin or hemoglobin
adducts; (2) molecular markers of susceptibility to benzene, such as in-
herited polymorphisms in enzymes involved in the metabolism of benzene;
and (3) biomarkers of the early effects of benzene, including hematotoxicity
(complete blood cell counts), gene mutations (glycophorin A), and chro-
mosome aberrations detected by fluorescence in situ hybridization (FISH),
G-banding, and the micronucleus assay. An introduction to these studies
has been presented previously (Rothman et al., 1996a, 1996b; Smith &
Rothman, 1998; Smith & Zhang, 1998), and only those findings pertain-
ing to biomarkers of exposure and early effects are discussed here.
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SAMPLE COLLECTION AND EXPOSURE ASSESSMENT

Biological samples were collected from 44 healthy workers currently
exposed to benzene with minimal exposure to toluene and other aromatic
solvents in Shanghai, China, in October 1992. The same number of healthy
controls without current or previous occupational exposure to benzene
were enrolled from factories in the same geographic area. Controls were
frequency matched by gender and age (5-yr intervals). Exclusion criteria
for all subjects were history of cancer, therapeutic radiation, chemotherapy,
or current pregnancy. Each subject was administered a questionnaire by a
trained interviewer. Data collected included age, gender, current and life-
long tobacco use, current alcohol consumption, medical history, and work
history. Height and weight of each subject were measured and peripheral
blood was obtained by phlebotomy.

Individual exposure was monitored by organic vapor passive dosimetry
badges (3M number 3500, St. Paul, MN), which were worn by each worker
for a full work shift on 5 separate days during the 1- to 2-wk period prior to
phlebotomy. An 8-h time-weighted average (TWA) exposure was calculated
for benzene as the geometric mean of the 5 air measurements. Cumulative
exposure to benzene was calculated by multiplying historical time-specific
exposure estimates by the duration worked. All exposure assessment was
performed blinded with respect to the biomarker analysis.

BIOMARKERS OF EXPOSURE

The median benzene air level among the exposed workers was 31 ppm
as an 8-h TWA (range 1–328 ppm). Air-monitoring data were confirmed by
measures of urinary benzene metabolites; phenol, muconic acid, catechol,
and hydroquinone showed strong, positive correlations with air benzene
levels, and were substantially higher in exposed workers compared to
controls (Rothman et al., 1998). In addition, current benzene air levels
were inversely correlated with the absolute lymphocyte count among ex-
posed workers, consistent with previous reports that lymphocytes are par-
ticularly sensitive to benzene (Rothman et al., 1996a, 1996b).

The initial metabolite of benzene, benzene oxide (BO), reacts with cys-
teinyl residues in hemoglobin (Hb) and albumin (Alb) to form protein ad-
ducts (BO-Hb and BO-Alb), which are presumed to be specific biomarkers
of exposure to benzene. With Dr. Stephen Rappaport’s lab in Chapel Hill,
NC, we analyzed BO-Hb in 43 of the exposed workers and 42 unexposed
controls and BO-Alb in a subsample consisting of 19 workers and 19 con-
trols (Yeowell-O’Connell et al., 1998). The adducts were analyzed by gas
chromatography–mass spectrometry (GC-MS) following reaction of the pro-
tein with trifluoroacetic anhydride and methanesulfonic acid. When sub-
jects were divided into controls (n = 42) and workers exposed to <31 ppm
(n = 21) and >31 ppm (n = 22) benzene, median BO-Hb levels were 32.0,
46.7, and 129 pmol/g globin, respectively (correlation with exposure:
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Spearman r = .67, p < .0001). These results represent the first observation
in humans that BO-Hb levels are significantly correlated with benzene
exposure. Median BO-Alb levels in these 3 groups were 103 (n = 19), 351
(n = 7), and 2010 (n = 12) pmol/g Alb, respectively, also reflecting a sig-
nificant correlation with exposure (Spearman r = .90, p < .0001). These
results clearly affirm the use of both Hb and Alb adducts of BO as bio-
markers of exposure to high levels of benzene.

BIOMARKERS OF EARLY EFFECT FROM BENZENE EXPOSURE

A potential method of predicting who is most at risk for benzene-in-
duced leukemia is to determine the extent of the genetic damage it pro-
duces in exposed individuals, using biomarkers of early effect. One means
of assessing genetic damage is to measure mutations in specific genes, such
as glycophorin A (GPA) (Compton et al., 1991; Jensen & Bigbee, 1996).
An increased level of “gene-duplicating” mutations in GPA was found in
the benzene-exposed workers (Rothman et al., 1995). Interestingly, this
increased mutation frequency was correlated with cumulative exposure to
benzene. Since cumulative exposure to benzene may correlate best with
leukemia risk, the GPA assay appears to have potential as a biomarker of
early biological effect for benzene and other leukemogens. The GPA assay
has drawbacks, however. First, it is relatively insensitive: High benzene
exposure (mean TWA at 72 ppm) only elevated the combined mutant fre-
quency from 16.3 to 23.0 per million, a 41% increase (Rothman et al.,
1995). Second, it can only be performed on GPA heterozygous (type MN)
individuals, who statistically constitute only 50% of any given population
under study. Thus, although the GPA assay can provide important mecha-
nistic information, it may not be an ideal biomarker of early effect.

The most common means of detecting genetic damage has traditionally
been conventional cytogenetics. Numerous publications have demonstrated
a clear association between benzene exposure and increased levels of
chromosome aberrations in peripheral blood cells. Since chromosome ab-
errations in peripheral blood lymphocytes have been shown to be associated
with increased risk for overall cancer incidence (Hagmar et al., 1994),
especially for increased mortality from hematological malignancies (Bonassi
et al., 1995), it is possible that specific chromosome aberrations may pro-
vide even better markers of future leukemia risk.

SPECIFIC CHROMOSOME ABERRATIONS IN LEUKEMIA

Specific chromosome aberrations are the hallmark of human leukemia
(Hagemeijer & Grosveld, 1996). Aneuploidy, the loss or gain of specific
chromosomes in AML and MDS (such as trisomy 8 and monosomy 5 and
7), is commonly observed as specific chromosome translocations, inver-
sions, and deletions [e.g., t(8;21), t(9;22), inv(16), and del(5q)] (Hagemeijer

BIOMARKERS OF BENZENE EXPOSURE 441



& Grosveld, 1996). The loss of chromosomes 5 and 7 and their long-arm
deletions are the two most common changes in therapy-related AML and
MDS (t-AML and t-MDS), especially among patients previously treated
with alkylating agents (Pedersen-Bjergaard et al., 1995). Treatment with
topoisomerase II inhibitors is associated with balanced chromosome ab-
errations such as t(8;21) and t(11q23) in t-AML (Pedersen-Bjergaard et al.,
1995). These specific chromosome aberrations are also more common
among leukemia patients with previous exposure to chemical solvents
(including chronic exposure to benzene, insecticides, petroleum, etc.)
(Crane et al., 1996; Mitelman et al., 1981).

DETECTION OF SPECIFIC CHROMOSOME ABERRATIONS BY FISH

We have applied FISH to determine the presence of specific chromo-
some aberrations in the lymphocytes of otherwise healthy workers ex-
posed to benzene and matched controls. Initially, we studied hyper-
diploidy levels of chromosome 9 in interphase cells because trisomy 9 has
been observed in benzene-poisoned patients (Erdogan & Aksoy, 1973;
Forni & Moreo, 1967) and benzene metabolites induce hyperdiploidy of
this chromosome in cultured lymphocytes in vitro (Eastmond et al., 1994;
Zhang et al., 1994). High benzene exposure was shown to increase
hyperdiploidy of chromosome 9 in the lymphocytes of otherwise healthy
workers, with trisomy 9 being the most prevalent form (Zhang et al.,
1996). We have gone on to use interphase cytogenetics to study the
hyperdiploidy of chromosomes 7 and 8, and these findings will be pub-
lished shortly. Interphase cytogenetics cannot be used, however, to detect
monosomy or rare translocations because of artifacts related to probe
overlap (Eastmond & Pinkel, 1990). Monosomy of chromosomes 5 and 7
and translocation (8;21) are among the most common aberrations observed
in AML. We therefore used chromosome painting and region-specific fluo-
rescent probes to examine AML-specific aberrations, including –5, –7, del
(5q31), del (7q22-34), and t(8;21), in metaphase spreads prepared from
the lymphocytes of workers exposed to benzene and matched controls
(Smith et al., 1998; Zhang et al., 1998a). We painted chromosomes 8 and
21 in lymphocyte metaphases from the 44 workers exposed to benzene
and 44 matched controls. To examine dose-response relationships, the
workers were divided into 2 groups at the median exposure level, a lower
exposed group ( £ 31 ppm, n = 21) and a higher exposed group (>31 ppm,
n = 22). Benzene exposure was associated with significant increases in
hyperdiploidy of chromosome 8 (1.2, 1.5, 2.4 per 100 metaphases; p
trend < .0001) and 21 (0.9, 1.1, 1.9; p trend < .0001). Translocations
between chromosomes 8 and 21 were increased up to 15-fold in highly
exposed workers (0.01, 0.04, 0.16; p trend < .0001). In one highly exposed
individual these translocations were reciprocal and were detectable by
reverse-transcription polymerase chain reaction (PCR) (Smith et al., 1998).
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These data indicate a potential role for t(8;21) in benzene-induced leuke-
mogenesis and are consistent with the hypothesis that detection of specific
chromosome aberrations may be a powerful approach to identify popula-
tions at increased risk of leukemia from benzene exposure.

We also used a novel FISH procedure to determine if specific aberra-
tions in chromosomes 1, 5, and 7 occurred at an elevated rate in meta-
phase spreads prepared from the lymphocytes of the same benzene-
exposed Chinese workers (Zhang et al., 1998a). We found that benzene
exposure was associated with increases in the rates of monosomy 5 and 7
but not monosomy 1 (p < .001, < .0001, and  < .94, respectively) and with
increases in trisomy and tetrasomy frequencies of all three chromosomes.
Long arm deletion of chromosomes 5 and 7 was increased in a dose-
dependent fashion (p = .014 and < .0001) up to 3.5-fold in the exposed
workers. These results demonstrate that leukemia-specific changes in chro-
mosomes 5 and 7 can be detected by FISH in the peripheral blood of other-
wise healthy benzene-exposed workers. We have also shown that benzene
metabolites induce these same changes in vitro (Zhang et al., 1998b).
Taken together, all of these data obtained using FISH suggest that aberra-
tions in chromosomes 5, 7, 8, and 21 may be a useful biomarker of early
biological effect for benzene exposure. Indeed, Dr. Luoping Zhang of Dr.
Smith’s laboratory has recently devised a FISH procedure to examine the
leukemia-related changes in all four of these chromosomes simultaneously.

Studies are being planned to apply these methods in workers exposed
to a broad range of benzene concentrations. In addition, we will explore
the impact of interindividual variation in genes that activate and detoxify
benzene and its metabolites on these outcomes, following up our previ-
ous report that variation in CYP2E1 and NQO1 influence the risk of ben-
zene hematotoxicity (Rothman et al., 1997).
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