

An Emerging Role for Epigenetic Dysregulation in Arsenic Toxicity and Carcinogenesis

Xuefeng Ren, Cliona M. McHale, Christine F. Skibola, Allan H. Smith, Martyn T. Smith and Luoping Zhang

doi: 10.1289/ehp.1002114 (available at http://dx.doi.org/)
Online 2 August 2010

National Institutes of Health
U.S. Department of Health and Human Services

An Emerging Role for E	nigenetic Dys	regulation in Arsenic	Toxicity and	Carcinogenesis
im Emerging note for E			I omicity wind	car chiogenesis

Xuefeng Ren^{1,*}, Cliona M. McHale¹, Christine F. Skibola¹, Allan H. Smith², Martyn T. Smith¹ and Luoping Zhang¹

Division of Environmental Health Sciences;
 Arsenic Health Effects Research Program,
 School of Public Health, University of California, Berkeley, California 94720, USA

* Corresponding Author's Address: Xuefeng Ren, School of Public Health, University of California, Berkeley, Hildebrand Hall #211, Berkeley, CA 94720. Phone: (510) 642-8965; FAX: (510) 642-0427; Email: xfr@berkeley.edu

Running title: Arsenic Toxicity and Epigenetic Mechanisms

Keywords: Arsenical compounds; Arsenic carcinogenesis; DNA methylation; Epigenetics; Histone Modification; MicroRNA

Acknowledgements: This research was funded by the Superfund Research Program (SRP) under NIEHS Grant P42 ES004705 to MTS. X.R. is a trainee of the SRP at UC Berkeley.

Competing Interests Declaration: The authors declare they have no competing financial interests.

Abbreviations: AHCY, S-adenosylhomocysteine hydrolase; APL, acute promyelocytic leukemias; As, inorganic arsenic; AS3MT, arsenic (+3 oxidation state) methyltransferase; ChIP-on-chip, chromatin immunoprecipitation-on-chip; ChIP-seq, chromatin immunoprecipitation-sequencing; DEFB1, defensin, beta 1; DNMTs, DNA methyltransferases; H3K4me3, H3K4 tri-methylation; H3K9me2, H3K9 di-methylation; H3K27me3, H3K27 tri-methylation; HATs, histone acetyltransferases; HDACs, histone deacetylases; MAT1A, methionine adenosyltransferase I, alpha; miRNA, microRNAs; MMA, DMA and TMA, mono-, di- and trimethylated arsenicals; MTR, 5-methyltetrahydrofolate-homocysteine methyltransferase; PBL, peripheral blood leukocytes; SAH, S-adnosyl-homocysteine; and SAM, S-adenosyl methionine.

Abstract

Objective: Exposure to arsenic, an established human carcinogen, through consumption of highly contaminated drinking water, is a worldwide public health concern. Multiple mechanisms by which arsenical compounds induce tumorigenesis have been proposed including oxidative stress, genotoxic damage and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms may also mediate toxicity and carcinogenicity resulting from arsenic exposure. Our objective was to examine the evidence supporting the roles of the three major epigenetic mechanisms, DNA methylation, histone modification and microRNA expression, in arsenic toxicity, and in particular carcinogenicity. A further goal was to identify future research directions necessary to clarify epigenetic and other mechanisms in humans.

Data sources and synthesis: We conducted a PubMed search of arsenic exposure and epigenetic modification through April, 2010, and summarized the *in vitro* and *in vivo* research findings, both from our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity and carcinogenicity.

Conclusions: Arsenic exposure has been shown to alter methylation level of both global DNA and promoter of genes, histone acetylation, methylation, and phosphorylation, and microRNA expression in studies mainly analyzing a limited number of epigenetic endpoints. Systematic epigenomic studies in human populations exposed to arsenic or in arsenic-associated cancer have not yet been performed. Such studies would help to elucidate the relationship between arsenic exposure, epigenetic dysregulation and carcinogenesis and are becoming feasible due to recent technological advancements.

Background on Arsenic and Its Genotoxic Effects

The International Agency for Research on Cancer classified arsenic, a toxic metalloid, as a group 1 carcinogen more than 20 years ago (IARC 1987). It is widely accepted that exposure to arsenic is associated with lung, bladder, kidney, liver, and non-melanoma skin cancers (IARC 2004; Pershagen 1981; Smith et al. 1992; Smith and Steinmaus 2009). High levels of arsenic have also been associated with the development of multiple other diseases and deleterious health effects in humans, such as skin lesions (dyspigmentation, keratosis); peripheral vascular diseases; reproductive toxicity; and neurological effects (Abernathy et al. 1999).

Exposure to arsenic typically results from either oral arsenic consumption through contaminated drinking water, soil and food, or arsenic inhalation in an industrial work setting. Arsenic contaminated drinking water has been associated with increased mortality of bladder and lung cancer in Chile (Marshall et al. 2007), and increased mortality of both non-cancerous causes and cancers in Bangladesh (Sohel et al. 2009). In the human arsenic metabolic pathway, inorganic pentavalent As (AsV) is converted to trivalent As (As^{III}), with subsequent methylation to mono- and dimethylated arsenicals (MMA, DMA) (Drobna et al. 2009). The general scheme is as follows:

$$As^{V}O_{4}^{3-} + 2e \rightarrow As^{III}O_{3}^{3-} + Me^{+} \rightarrow MMA^{V}O_{3}^{2-} + 2e \rightarrow MMA^{III}O_{2}^{2-} + Me^{+} \rightarrow DMA^{V}O_{2}^{-} + 2e \rightarrow DMA^{III}O^{-}$$

It is largely agreed that methylated arsenicals, especially MMA^{III}, are more toxic than inorganic As^{III} both *in vivo* (in animals) (Petrick et al. 2001) and *in vitro* (human cells lines) (Styblo et al. 2002). Multiple mechanisms by which arsenical compounds induce

tumorigenesis have been proposed including oxidative stress (Kitchin and Wallace 2008), genotoxic damage and chromosomal abnormalities (Moore et al. 1997a; Zhang et al. 2007a), co-carcinogenesis with other environmental toxicants (Rossman et al. 2004), as well as epigenetic mechanisms, in particular, altered DNA methylation (Zhao et al. 1997).

It is generally believed that arsenic does not induce point mutations, based on negative findings in both bacterial and mammalian mutagenicity assays (Jacobson-Kram and Montalbano 1985; Jongen et al. 1985). Arsenic does induce deletion mutations but arsenical compounds vary in their potency (Moore et al. 1997b). With respect to arsenic's ability to induce chromosomal alterations in humans, studies in the early 90's showed that the cell micronucleus assay could be used as a biological marker of genotoxic effect of arsenic exposure (Smith et al. 1993). Later studies validated this assay and demonstrated higher frequencies of micronuclei in individuals who were chronically exposed to arsenicals (Moore et al. 1997a). Analysis of chromosomal alterations in the bladder tumor DNA of 123 patients, who had been exposed to arsenic in drinking water, showed that tumors from patients with higher estimated levels of arsenic exposure had higher levels of chromosomal instability than tumors from patients with lower estimated levels of exposure, suggesting that bladder tumors from arsenic-exposed patients may behave more aggressively than tumors from unexposed patients (Moore et al. 2002). Based on these findings overall, a plausible and generally accepted mechanism for arsenic carcinogenicity is the induction of structural and numerical chromosomal abnormalities through indirect effects on DNA. However, as has been demonstrated for multiple tumors, including urothelial and hematological malignancies (Fournier et al. 2007; Muto et al. 2000), it is likely that inter-related genetic and epigenetic

mechanisms together contribute to the toxicity and carcinogenicity of arsenic (Hei and Filipic 2004; Zhao et al. 1997).

Epigenetic Modifications Induced by Arsenic

Epigenetic alteration, which is not a genotoxic effect, leads to heritable phenomena that regulate gene expression without involving changes in the DNA sequence (Feinberg and Tycko 2004), and thus could be considered a form of potentially reversible DNA modification. Recent mechanistic studies of arsenic carcinogenesis have directly or indirectly shown the potential involvement of altered epigenetic regulation in gene expression changes induced by arsenic exposure. We recently showed that urinary defensin, beta 1(DEFB1) protein levels were significantly decreased among men highly exposed to arsenic in studies conducted in Nevada, U.S. and in Chile (Hegedus et al. 2008). DNA methylation is thought to play a role in regulating *DEFB1* expression (Sun et al. 2006). Follow-up studies are underway in our laboratory to determine if reduced levels of *DEFB1* in exposed populations are due to arsenic-induced targeted gene silencing. Several studies have observed extensive changes in global gene expression in individuals following arsenic exposure (Andrew et al. 2008; Bailey et al. 2009; Bourdonnay et al. 2009; Xie et al. 2007). Further, maternal exposure to arsenic has been shown to alter expression of transcripts in the mouse fetus (Liu et al. 2008) and human newborn (Fry et al. 2007). Since epigenetic processes are major regulators of gene expression, these findings suggest that dysregulation of epigenetic processes could contribute mechanistically to arsenic-induced changes in gene expression and cancer, affecting both people exposed to arsenic directly and those of future generations in a heritable manner, without directly altering the genome. Dysregulation of epigenetic processes could also

contribute to vascular disease (Yan et al. 2010) and neurological disorders (Urdinguio et al. 2009).

Many groups have directly examined the association of arsenic exposure on epigenetic phenomena, and as the technologies used to study the various epigenetic modifications are developing rapidly, we believe that a review of current findings from the literature is warranted. While epigenetic alterations may contribute to effects of arsenic on both cancer and non-cancer outcomes, this perspective summarizes the recent *in vitro* and *in vivo* research findings on the potential role of arsenic-mediated epigenetic alterations in arsenic-induced toxicity and carcinogenicity. Three major epigenetic mechanisms proposed to play roles in arsenic-induced carcinogenesis are discussed: altered DNA methylation, histone modification, and microRNA (miRNA) expression. Future directions that can further inform our understanding of the epigenetic and overall mechanisms underlying the effects of arsenic are also proposed.

Arsenic Exposure and DNA Methylation

Introduction

DNA methylation is tightly regulated in mammalian development and is essential for maintaining the normal functioning of the adult organism (Schaefer et al. 2007). Altered DNA methylation has been associated with multiple human diseases (Robertson 2005). Global genomic DNA hypomethylation is a hallmark of many types of cancers (Esteller et al. 2001), resulting in illegitimate recombination events and causing transcriptional deregulation of affected genes (Robertson 2005). In mammalian systems, DNA methylation occurs

predominantly in cytosine-rich gene regions, known as CpG islands, and serves to regulate gene expression and maintain genome stability (Yoder et al. 1997). DNA methyltransferases (DNMTs) are responsible for transferring a methyl group from the S-adenosyl methionine (SAM) cofactor to the cytosine nucleotide, producing 5-methylcytosine and s-adenosyl homocysteine (Figure 1) (Razin and Riggs 1980). Three different families of *DNMTs* have been identified so far, namely, *DNMT1*, 2 and 3 (Robertson and Wolffe 2000).

Mechanisms of arsenic-induced changes in DNA methylation

An association between arsenic-induced carcinogenesis and DNA methylation was proposed because arsenic methylation and DNA methylation both utilize the same methyl donor, SAM (Figure 1). SAM is a coenzyme involved in more than 40 metabolic reactions that require methyl group transfers (Chiang et al. 1996; Loenen 2006; Reichard et al. 2007). As SAM is the unique methyl group donor in each conversion step of biomethylation of arsenic, long term exposure to arsenic may lead to SAM insufficiency and global DNA hypomethylation (Coppin et al. 2008; Goering et al. 1999; Zhao et al. 1997). Further, as SAM synthesis requires methionine, an essential amino acid in humans, dietary methyl insufficiency could exacerbate effects of arsenic on DNA methylation (Figure 1) (McCabe and Caudill 2005). Indeed, human exposure to arsenic often occurs in relatively resource-poor populations in developing countries that also may have low dietary intakes of methionine (Anetor et al. 2007). In addition to its effect on SAM availability, arsenic can directly interact with DNMTs and inhibit their activities. Several studies have shown that arsenic exposure leads to a dose-dependent reduction of *DNMTs* mRNA levels and activity of DNMTs both *in vitro* and *in*

vivo, including *DNMT 1*, *DNMT 3A* and *DNMT 3B* (Ahlborn et al. 2008; Cui et al. 2006b; Fu et al. 2007; Reichard et al. 2007).

Arsenic and global DNA hypomethylation

Global DNA hypomethylation is expected to result from arsenic exposure through both SAM insufficiency and reduction of *DNMTs* gene expression (Reichard et al. 2007). Arsenic exposure has been reported to induce DNA hypomethylation in vitro and in animal studies, as summarized in Table 1. For example, rats (Uthus and Davis 2005) and mice (Chen et al. 2004; Okoji et al. 2002; Xie et al. 2004) exposed to As^{III} for several weeks displayed global hepatic DNA hypomethylation. Similarly, exposure of fish to As^{III} for 1, 4, and 7 days resulted in sustained DNA hypomethylation compared to non-exposed fish (Bagnyukova et al. 2007). Studies in cell lines in vitro yielded similar results, with a dose-dependent reduction in global genomic DNA methylation resulting from As^{III} exposure (Table 1) (Benbrahim-Tallaa et al. 2005; Chen et al. 2004; Coppin et al. 2008; Reichard et al. 2007; Sciandrello et al. 2004; Zhao et al. 1997). In contrast to the animal and *in vitro* findings, there are limited human population studies available. A cross-sectional study of 64 people reported by Dr. Majumdar et al. indicated that people exposure to arsenic contaminated water (250 to 500 µg/L) was associated with a global DNA hypermethylation (Majumdar et al. 2009). However, the participants in the highest estimated exposure group (>500 μg/L) had methylation levels that were comparable to those in the two lowest groups. The one possible reason for this inconsistency may because the actual intake of arsenic into the body is different in the participants whose exposures were estimated based on the concentrations in their drinking water. Another well designed study published in 2007 assessed the relationship between

arsenic and DNA methylation in a cross-sectional study with 294 participants (Pilsner et al. 2007). They reported that a positive association was observed between urinary arsenic and DNA hypermethylation in the study population. Plasma folate level apparently has a significant effect on the level of DNA methylation since a dose-response relation was evident only among participants with adequate folate levels (≥9 nmol/L) when estimates were stratified according to plasma folate level after control for other factors. In a separated but closely related cross sectional study, the authors found that individuals with hypomethylation of PBL DNA were 1.8 (95% CI, 1.2–2.8) times more likely of having skin lesions two years later after adjusting for age, urinary As and other factors (Pilsner et al. 2009). The authors speculated that "adequate folate may be permissive for an adaptive increase in genomic methylation of PBL DNA associated with As exposure, and that individuals who are similarly exposed but in whom the increase in genomic DNA methylation does not occur (or cannot be sustained) are at elevated risk for skin lesions". Further studies are required to determine if exposure to As^{III} has differential effects on the status of DNA methylation across tissues, cells, and species.

Arsenic and gene promoter methylation

While the effects of arsenic exposure on global genomic DNA methylation remain unclear, DNA hypo- or hyper-methylation of promoters of some genes has been reported in human skin cancer (Chanda et al. 2006) and bladder cancer (Chen et al. 2007; Marsit et al. 2006c) associated with arsenic exposure. It also observed in human cell lines (Chai et al. 2007; Fu and Shen 2005; Jensen et al. 2008; Mass and Wang 1997), animal cell lines (Chen et al. 2001, Takahashi et al. 2002), animals (Cui et al. 2006; Okoji et al. 2002; Waalkes et al. 2004) and humans (Chanda et al. 2006; Chen et al. 2007; Marsit et al. 2006b; Zhang et al. 2007b)

exposed to arsenic (Table 2). While this gene specific effect observed in these studies could be due to the study bias in which researchers only examined a small group of genes, the repeatedly reported similar methylation pattern in the same genes after arsenic exposure might be also suggest that arsenic could selectively target specific genes. However, little is known about how DNA methylation is targeted to specific regions (Jones and Baylin 2002). Hypoand hyper-methylation of genes could mediate carcinogenesis through up-regulation of oncogene expression or down-regulation of tumor suppressor genes, respectively. Both observations have been reported. Hypomethylation of the promoter region of oncogenic Hras1 and an elevated Hras1mRNA level was demonstrated in mice treated with sodium arsenite (Okoji et al. 2002). Similar results on the mRNA expression and promoter hypomethylation of *Hras1* and *c-myc* were also observed *in vitro* (Chen et al. 2001; Takahashi et al. 2002). The evidence has linked over-expression of Esr1 gene with estrogen-induced hepatocellular carcinoma in mice (Couse et al. 1997). Arsenic exposure leads to overexpression of the EsrI gene resulting from hypomethylation of its promoter region, indicating an association between over-expression of Esr1 and arsenic hepatocarcinogenesis (Chen et al. 2004; Waalkes et al. 2004).

Dose-dependent hypermethylation at the promoter region of several tumor suppressor genes (p15, p16, p53 and DAPK etc) was induced by arsenic exposure in vitro and in vivo (Boonchai et al. 2000; Chanda et al. 2006; Fu and Shen 2005; Mass and Wang 1997; Zhang et al. 2007b). In a population-based study of human bladder cancer in 351 patients, RASSF1A and PRSS3 promoter hypermethylation was positively associated with toenail arsenic concentrations, and promoter hypermethylation in both genes also was associated with

invasive (versus non-invasive low grade) cancer (Marsit et al. 2006b), an outcome recapitulated in arsenic-induced lung cancer in A/J mice, in which the arsenic exposure reduced the expression of RASSF1A resulting from hypermethylation of its promoter region and was associated with arsenic-induced lung carcinogenesis (Cui et al. 2006a). DAPK is a positive mediator of gamma-interferon induced programmed cell death and tumor suppressor candidate. A study analyzed 38 patients with urothelial carcinoma, and the author reported that hypermethylation of *DAPK* gene was observed in 13 of 17 tumors in patients living in arsenic-contaminated areas when compared with 8 of 21 tumors from patients living in arsenic non-contaminated areas (Chen et al. 2007). This hypermethylation of DAPK gene was observed in vitro study too when the immortalized human uroepithelial cells were exposed to arsenic (Chai et al. 2007). The increase of DNA hypermethylation of promoter in p16 gene was observed in arseniasis patients when compared to people with no history of arsenic exposure (Zhang et al 2007b). In another study which examined the methylation status of promoters in p53 and p16 in DNA extracted from peripheral lymphocytes, an increase of methylation in both p53 and p16 genes was observed and associated with an estimated arsenic exposure in a dose dependent manner. However, this same study also showed that the subjects from the highest arsenic exposure group exhibited a hypomethylation of both p53 and p16 genes (Chanda et al. 2006). Chronic exposure to arsenic in vitro has been shown to induce malignant transformation in several human cell types (Benbrahim-Tallaa et al. 2005; Zhao et al. 1997), in which the alteration of DNA methylation level has been shown to be involved (Jensen et al. 2008; Jensen et al. 2009a; Zhao et al. 1997).

Summary

Arsenic does not fall into the classic model of carcinogenesis, as it is not efficient at inducing point mutations or initiating and promoting the development of tumors in experimental animals, one likely mechanism by which arsenicals operate is through the disruption of normal epigenetic control at specific loci, which may result in aberrant gene expression and cancer (Andrew et al. 2008; Xie et al. 2007). Though there is increasing evidence that arsenic exposure alters methylation levels in both global DNA and promoter of some genes, the current available studies are essentially descriptive, and difficult to interpret due to the complexity of the study populations and limited information provided in the papers. Studies are needed that systematically investigate DNA methylation on a genome-wide level in arsenic exposed cell lines and in target tissues, such as exfoliated bladder cells, from well characterized arsenic exposed human populations, or in tumor tissue from arsenic-associated cancers. Such studies would help to clarify potential effects of arsenic exposure on DNA methylation and carcinogenesis.

Arsenic Exposure and Histone Modification

Introduction

Chromatin is structured within the cell nucleus in units called nucleosomes, in which DNA is packaged within the cell. The nucleosome core particle consists of stretches of DNA (~146bp) wrapped in left-handed superhelical turns around a histone octamer consisting of 2 copies each of the core histones H2A, H2B, H3, and H4 (Luger et al. 1997). While H1 does not make up the nucleosome "bead", H1 plays a role in keeping in place the DNA that has wrapped around the nucleosome (Figure 2). From a structural and functional perspective, histones have different characteristics depending on the number of amino acids and the number and

type of covalent modifications in these residues. These covalent modifications are found in the tails of the histone chains and include acetylation, methylation, phosphorylation, citrullination, ubiquitination, sumoylation, ADP ribosylation, deimination and proline isomerization (Kouzarides 2007) (Figure 2) and influence many fundamental biological processes. To date, published studies on histone modifications and arsenic toxicity have focused on acetylation, methylation and phosphorylation.

Histone acetylation

Histone acetylation is a dynamic and reversible event (Glozak and Seto 2007), in which the acetylation status of lysine residues in the histone tail are regulated by two antagonistic enzyme classes, histone acetyltransferases (HATs) (Sterner and Berger 2000) and histone deacetylases (HDACs) (Cress and Seto 2000). Utilizing acetyl-coenzyme A (acetyl-CoA) as an acetyl group donor, HATs enzymatically transfer a single acetyl group to the €-amino group of specific lysine side chains within the histone's basic N-terminal tail region, while HDACs remove the acetyl group from the lysine residues.

Evidence for an association between altered histone acetylation and arsenic-induced toxicity continues to be strengthened. In the early 1980's, arsenic exposure was shown to significantly reduce histone acetylation in Drosophila (Arrigo 1983). More recently, changes in histone H3 acetylation has observed in association with As^{III} and MMA^{III} induced malignant transformation of human urothelial cells in vitro, and these modifications apparently are arsenic specific because the co-occurring changes in both As^{III} and MMA^{III} induced malignant transformation are significantly higher than by random chance (Jensen et al. 2008). Further,

DNA hypermethylation was identified in a number of the hypoacetylated promoters identified in the study, suggesting that arsenic coordinately targets genes through dysregulation of different epigenetic mechanisms contributing to malignant transformation (Jensen et al. 2008). Recently, we showed that the global level of H4K16 acetylation in human bladder epithelial cells was reduced in a dose- and time-dependent manner by both As^{III} and MMA^{III} treatment. Moreover, knockdown of *MYST1*, the gene responsible for H4K16 acetylation, resulted in an increased cytotoxicity to arsenical exposure in human bladder epithelial cells, suggesting that H4K16 acetylation may be important for resistance to arsenic-induced toxicity (Jo et al. 2009).

Interestingly, As^{III} exposure has also been shown to induce elevated histone acetylation, which was reportedly responsible for the up-regulation of genes involved in apoptosis or the response to cell stress after exposure to arsenic (Li et al. 2002; Li et al. 2003). This result probably is mediated by HDACs. It has been demonstrated that As^{III} inhibits *HDACs* that correlates with increased global histone acetylation (Ramirez et al. 2008). The level of inhibition is comparable to that of the well-known *HDACs* inhibitor trichostatin A (Drummond et al. 2005). Together, these studies clearly provide evidence that histone acetylation is dysregulated by arsenic exposure, but further work needs to be done to understand the underlying mechanisms and to clarify the net effect of altered histone acetylation on arsenic-induced toxicity and carcinogenesis.

Histone methylation

Like acetylation, histone methylation is also a reversible process. However, unlike acetylation, which occurs only on lysine residues at the histone tail, histone methylation occurs on both lysine and arginine residues (Martin and Zhang 2005; Wysocka et al. 2006). In mammals, histone methylation is usually found on histone H3 and H4, though it also occurs on H2A or H2B. Arginine methylation is catalyzed by the enzyme, arginine Nmethyltransferase (Wysocka et al. 2006), while lysine methylation is catalyzed by two different classes of proteins, the SET-DOMAIN-containing protein family and the non-SETdomain proteins, DOT1/DOT1L (Martin and Zhang 2005). Histone methylation can occur in the mono-methyl, symmetrical di-methyl, asymmetrical di-methyl state, and in the tri-methyl group states, in contrast to the single acetyl group added during acetylation (Klose and Zhang 2007). Histone methylation was considered a static modification until recent years, when enzymes were found capable of antagonizing histone arginine methylation or directly removing a methyl group from a lysine residue of histone. These enzymes include peptidylarginine deiminase enzymes and amine oxidase and JmjC-domain-containing histone demethylase enzymes (Klose and Zhang 2007).

Accumulating evidence implicates the aberrant loss or gain of histone methylation in tumorigenesis (Schneider et al. 2002). In the early 1980's, Arrigo first reported that exposure to arsenic in Drosophila cells led to a complete abolishment of methylation of histones H3 and H4 (Arrigo 1983), and the effect on H3 was later confirmed by other investigators (Desrosiers and Tanguay 1986; Desrosiers and Tanguay 1988). The response to arsenic exposure in the mammalian cell is more complex, and As^{III} treatment can lead to differential effects on the methylation of H3 lysine residues, including increased H3K9 di-methylation (H3K9me2) and

H3K4 tri-methylation (H3K4me3) and decreased H3K27 tri-methylation (H3K27me3) (Zhou et al. 2008). A recent report showed that 1 μM arsenite significantly increased H3K4me3 after 24 hour and 7 days exposure in human lung carcinoma A549 cells. Importantly, the tri-methyl H3K4 remained elevated, apparently inherited through cell division, 7 days after the removal of arsenite (Zhou et al. 2009). Elevated H3K9me2, mediated by increased levels of histone methyltransferase G9a protein (Zhou et al. 2008), correlates with transcriptional repression (Peterson and Laniel 2004), and has been shown to be involved in the silencing of tumor suppressers in the cancer cell lines (Esteve et al. 2007; McGarvey et al. 2006). However, data on the patterns of histone methylation induced by arsenic exposure are limited and further studies are required to decipher the relationship between altered histone methylation and gene expression, as well as its effect on arsenic-induced carcinogenesis.

Histone phosphorylation

All four core histone proteins, H2A, H2B, H3 and H4 and the linker histone H1 can be post-translationally modified by phosphorylation. Cyclin dependent kinases (CDKs) are believed to be responsible for H1 phosphorylation (Swank et al. 1997). Multiple kinases are able to phosphorylate H2A and H2B, such as ataxia telangiectasia mutated (ATM) for H2AX, etc (Burma et al. 2001). Phosphorylation of H3 has been specifically implicated in cell cycle progression and regulation of gene expression (Houben et al. 2007). Similarly, phosphorylation of histone H4 (Serine 1) increases during the cell-cycle, and is believed to be regulated by casein kinase 2 (CSNK2) (Barber et al. 2004).

Histone phosphorylation may also contribute to arsenic-induced carcinogenesis. While all four core histones, H2A, H2B, H3, and H4, are targets of protein kinases (Peterson and Laniel 2004), the most well studied histone phosphorylation event is that of H2AX, a form of H2A which makes up to 25% of the total H2A pool in mammals. A recent study demonstrated that arsenic trioxide induces apoptosis by upregulation of phosphorylated H2AX and may be one of the mechanisms by which arsenic trioxide acts as an antineoplastic agent (Zykova et al. 2006) (Figure 2). Little is known about histone phosphorylation and arsenic carcinogenesis. Studies have suggested that H3 phosphorylation induced by arsenic exposure might be responsible for the up-regulation of oncogenes c-fos and c-jun (Li et al. 2003), and induction of a protoapoptotic factor, caspase 10 (Li et al. 2002). Another important metal with epigenetic effects, nickel, has been shown to induce phosphorylation of histone 3, specifically H3S10, via the activation of the JNK/SAPK pathway (Ke et al. 2008). As it is known that arsenite exposure activates JNK and p38/Mpk2 kinase by inhibition of the corresponding protein phosphatases (Cavigelli et al. 1996), phosphorylation of histone H3 via the JNK/SAPK pathway might be a common mechanism of metal-induced histone modification.

Summary

Different types of histone modifications have been shown to coordinately impact gene regulation and expression. For example, *WNT5A* gene expression is upregulated in As^{III} and MMA^{III} induced malignant transformation in uroepithelial cells in association with the enrichment of permissive histone modifications and reduction of repressive modifications in the *WNT5A* promoter region (Jensen et al. 2009b). Two histone modifications, di-methylation of lysine 4 and acetylation of lysine 9 and 14 of histone H3 are associated with transcriptional

competency while the other two modifications, tri-methylation of lysine 27 and dimethylation of lysine 9 of histone H3 are correlated with transcriptional repression (Peterson & Laniel 2004). Although we are still in the early stages of elucidating the association between histone modifications induced by arsenic and their effects on arsenic carcinogenicity, newly available techniques such as mass-spectrometry-based histone modification analysis and genome-wide sequencing offer the potential to systematically characterize the altered histone modifications induced by arsenicals and the subsequent changes in gene expression.

Arsenic Exposure and MiRNA Expression

Introduction

In the past several years, a small class of non-protein coding RNAs, called miRNA, which participate in diverse biological regulatory events and which are transcribed mainly from non-protein coding regions of the genome, has been discovered by several laboratories, (Bartel 2004; He and Hannon 2004). Over 700 human miRNAs have been identified to date as documented by the miRBase Database (Release 14) (miRBase 2009) and it is predicted that many more exist. Each miRNA is thought to target several hundred genes, and as many as 30% of mammalian genes are regulated by miRNA (Lewis et al. 2005). MiRNAs deactivate gene expression by binding to the 3' untranslated region of mRNA with incomplete base pairing (Wightman et al. 1993). The exact mechanisms by which expression is repressed are still under investigation but may include the inhibition of protein synthesis, the degradation of target mRNAs, and the translocation of target mRNAs into cytoplasmic processing bodies (P-bodies) (Jackson and Standart 2007). Due to the suppressive effect of miRNA on gene expression, a reduction or elimination of miRNAs that target oncogenes could result in the

inappropriate expression of those oncoproteins, for example, it has been shown that *RAS* oncogene is regulated by the let-7 miRNA family (Johnson et al. 2005). Conversely, the amplification or overexpression of miRNAs that have a role in regulating the expression of tumor suppressor genes could reduce the expression of such genes. A prime example of this is the observation of the miR-34 family on the p53 tumor suppressor pathway (He et al. 2007).

Altered miRNA expression and arsenic exposure

Despite the significant progress made towards understanding the biogenesis and mechanisms of action of miRNA, much less is known about the effect of environmental exposures, in particular carcinogens such as arsenic, on miRNA expression. Several studies have shown that exposure to exogenous chemicals can alter miRNA expression (Kasashima et al. 2004; Pogribny et al. 2007; Shah et al. 2007). In vitro exposure of cells to ROS-generating metal sulfates, iron- and aluminum-sulfate, led to the up-regulation of a specific set of miRNAs, including miR-9, miR-125b and miR-128 (Lukiw and Pogue 2007). ROS generation resulting from arsenic exposure is thought to play a large role in arsenic induced carcinogenesis and toxicity (Flora et al. 2007; Hei and Filipic 2004) and could potentially alter these miRNAs in a similar manner. In a recent study, Marsit and colleagues examined the roles that arsenic and folate deficiency play in miRNA expression (Marsit et al. 2006a). Human lymphoblast TK6 cells that had been treated with sodium arsenite and cells that had been grown in folatedeficient media over a six-day period, showed similarly altered expression of five miRNAs when compared to untreated controls, suggesting a common mechanism of dysregulation. One such potential mechanism is aberrant DNA methylation occurring as a result of SAM depletion (Caudill et al. 2001; Loenen 2006), which arises under conditions of arsenic

exposure and folate deficiency. However, the authors did not observe a significant decrease in global methylation between the treated and control groups, suggesting more subtle or targeted effects. The induced changes in miRNA expression were not stable and returned to baseline levels upon removal of the stress conditions, suggesting that chronic exposure may be necessary to permanently alter expression of miRNAs (Marsit et al. 2006a). Arsenic trioxide (As₂O₃), a treatment option for acute promyelocytic leukemia (APL) (Zhou et al. 2005), induces the re-localization and degradation of the nuclear body protein PML, as well as the degradation of PML-RARalpha in APL cells (Shao et al. 1998). APL patients treated with all-trans retinoic acid release a group of miRNAs transcriptionally repressed by the APL-associated PML-RAR oncogene (Saumet et al. 2009), suggesting that arsenicals may produce similar effects on miRNA expression in APL patients.

Summary

Overall, these studies show that environmental carcinogen exposures can lead to altered miRNA expression profiles, which may be associated with the process of carcinogenesis. Further studies are necessary to clarify whether chronic exposure to arsenic is capable of altering miRNA expression and what biological effects are related to the altered miRNA expression.

Epigenomic Approach Proposed for Future Studies

Emerging evidence suggests that arsenic acts through several epigenetic mechanisms. The characterization of genome-wide patterns of DNA methylation, post-translational histone modification, and miRNA expression following arsenic exposure *in vitro* and *in vivo*, represents a new frontier toward our understanding of the mechanisms of arsenic toxicity and

carcinogenesis. Emerging epigenomic technologies such as ChIP (chromatin immunoprecipitation)-on-chip and ChIP-sequencing (ChIP-seq), global methylation and miRNA microarrays, as well as whole genomic DNA sequencing platform will facilitate these efforts (Schones & Zhao, 2008). ChIP-on-chip or Chip-Seq is used primarily to determine how proteins interact with DNA, and has the potential to clarify how epigenetic changes, particularly histone modifications, induced by arsenic exposure, regulate gene expression (Park 2009). Mass spectrometry (MS) offers an unbiased approach to mapping the combinations of histone modifications and requires highly sensitive and precise mass measurements: the difference in mass between a trimethylation and acetylation is only 36 millidaltons, for example. Using LC-MS in a recent study, we identified acetylation of H4K16 as a histone modification that is significantly reduced post arsenic treatment, especially with long-term exposure (Jo et al. 2009).

With the rapid development of array and sequencing-based DNA-methylation profiling technologies, global DNA methylation profiling has clearly come of age. As epigenetic modifications do not alter gene sequence but rather, gene expression, transcriptomics may eventually allow the characterization of the expression profiles of epigenetically labile genes. Identification of the genes dysregulated through epigenetic mechanisms by arsenic exposure, will further elucidate the associated biological processes and disease states. Proteomics using both conventional "bottom-up" and newer cutting-edge "top-down" mass spectrometry approaches to detect labile posttranslational modifications that are often lost in conventional MS/MS experiments will allow further clarification of the resulting phenotype. The difference between these two approaches is that the materials introduced into the mass spectrometer are

either peptides generated by enzymatic cleavage of one or many proteins in "bottom-up" approach, or intact protein ions or large protein fragments in "top-down" approach.

Integration of epigenetic, transcriptomic and proteomic datasets generated by these techniques will facilitate a more thorough understanding of the interplay of these processes under normal conditions and during arsenic exposure. Indeed, the importance of a comprehensive understanding of the epigenome has been recognized by the scientific community and is reflected in the NIH Roadmap Initiative established in 2007 with the goal of developing comprehensive reference epigenome maps and new technologies for comprehensive epigenomic analyses (NIH 2007).

Conclusion and Future Directions

While experiments in suitable model systems could complement the human studies, as discussed earlier, there may be differences between epigenetic effects in animals and humans, and between various tissues and cell types. Thus, studies in human populations exposed to high levels of arsenic will be necessary to understand how individual differences in arsenic methylation and genetic background, as well as environmental factors such as diet and age, influence the epigenetic response to chronic arsenic exposure. Studies will also be required across various tissue and cell types to identify and validate the levels and patterns of epigenetic markers in these cells. Accessible tissues such as blood may not represent a good surrogate of target tissues such as bladder, kidney, and lung. High-resolution methylation data have shown that tissues have distinct epigenetic profiles (Christensen et al. 2009; Illingworth et al. 2008) and aging and environmental exposures may alter methylation in a tissue-specific manner (Christensen et al. 2009). Thus, epigenetic profiles from disease-relevant tissues such

as exfoliated bladder cells from exposed and unexposed disease-free individuals could allow early effects to be identified. Such cells could also be analyzed from individuals with arsenic-and non-arsenic associated cancers to identify arsenic-associated tumorigenic profiles. It was recently shown that it may be possible to detect bladder cancer using gene expression signatures in exfoliated bladder urothelia (Rosser et al. 2009). Similarly, the effects of inhaled arsenic on epigenetic profiles in bronchial airway epithelial cells could be examined in exposed and unexposed disease-free individuals and those with lung cancer, as was recently done using miRNA profiling for cigarette smoke exposure (Schembri et al. 2009).

In conclusion, a comprehensive epigenomic approach may elucidate the mechanisms of arsenic-induced carcinogenesis. Such an approach would also facilitate the discovery of biomarkers of arsenic exposure and early effect, associated disease and disease progression, as well as factors that confer susceptibility.

References

Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, et al. 1999. Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107(7):593-597.

Ahlborn GJ, Nelson GM, Ward WO, Knapp G, Allen JW, Ouyang M, et al. 2008. Dose response evaluation of gene expression profiles in the skin of K6/ODC mice exposed to sodium arsenite. Toxicol Appl Pharmacol 227(3):400-416.

Andrew AS, Jewell DA, Mason RA, Whitfield ML, Moore JH, Karagas MR. 2008. Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a u.s. Population. Environ Health Perspect 116(4):524-531.

Anetor JI, Wanibuchi H, Fukushima S. 2007. Arsenic exposure and its health effects and risk of cancer in developing countries: micronutrients as host defence. Asian Pac J Cancer Prev 8(1):13-23.

Arrigo AP. 1983. Acetylation and methylation patterns of core histones are modified after heat or arsenite treatment of Drosophila tissue culture cells. Nucleic Acids Res 11(5):1389-1404.

Bagnyukova TV, Luzhna LI, Pogribny IP, Lushchak VI. 2007. Oxidative stress and antioxidant defenses in goldfish liver in response to short-term exposure to arsenite. Environ Mol Mutagen 48(8):658-665.

Bailey K, Xia Y, Ward WO, Knapp G, Mo J, Mumford JL, et al. 2009. Global Gene Expression Profiling of Hyperkeratotic Skin Lesions from Inner Mongolians Chronically Exposed to Arsenic. Toxicol Pathol 37(7):849-859.

Barber CM, Turner FB, Wang Y, Hagstrom K, Taverna SD, Mollah S, et al. 2004. The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S-phase is evolutionarily conserved. Chromosoma 112(7):360-371.

Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281-297.

Benbrahim-Tallaa L, Waterland RA, Styblo M, Achanzar WE, Webber MM, Waalkes MP. 2005. Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 206(3):288-298.

Boonchai W, Walsh M, Cummings M, Chenevix-Trench G. 2000. Expression of p53 in arsenic-related and sporadic basal cell carcinoma. Arch Dermatol 136(2):195-198.

Bourdonnay E, Morzadec C, Sparfel L, Galibert MD, Jouneau S, Martin-Chouly C, et al. 2009. Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol 46(4):649-656.

Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. 2001. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. The Journal of biological chemistry 276(45): 42462-42467.

Caudill MA, Wang JC, Melnyk S, Pogribny IP, Jernigan S, Collins MD, et al. 2001. Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J Nutr 131(11):2811-2818.

Cavigelli M, Li WW, Lin A, Su B, Yoshioka K, Karin M. 1996. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. Embo J 15(22):6269-6279.

Chai CY, Huang YC, Hung WC, Kang WY, Chen WT. 2007. Arsenic salts induced autophagic cell death and hypermethylation of DAPK promoter in SV-40 immortalized human uroepithelial cells. Toxicol Lett 173(1):48-56.

Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, et al. 2006. DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89(2):431-437.

Chen H, Li S, Liu J, Diwan BA, Barrett JC, Waalkes MP. 2004. Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: implications for arsenic hepatocarcinogenesis. Carcinogenesis 25(9):1779-1786.

Chen H, Liu J, Zhao CQ, Diwan BA, Merrick BA, Waalkes MP. 2001. Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation.

Toxicol Appl Pharmacol 175(3):260-268.

Chen WT, Hung WC, Kang WY, Huang YC, Chai CY. 2007. Urothelial carcinomas arising in arsenic-contaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase. Histopathology 51(6):785-792.

Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, et al. 1996. S-Adenosylmethionine and methylation. Faseb J 10(4):471-480.

Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al. 2009. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5(8): e1000602.

Couse JF, Davis VL, Hanson RB, Jefferson WN, McLachlan JA, Bullock BC, Newbold RR, Korach KS. 1997. Accelerated onset of uterine tumors in transgenic mice with aberrant

expression of the estrogen receptor after neonatal exposure to diethylstilbestrol. Mol Carcinog 19: 236–42

Cress WD, Seto E. 2000. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184(1):1-16.

Cui X, Wakai T, Shirai Y, Hatakeyama K, Hirano S. 2006a. Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice. Toxicol Sci 91(2):372-381.

Cui X, Wakai T, Shirai Y, Yokoyama N, Hatakeyama K, Hirano S. 2006b. Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 37(3):298-311.

Desrosiers R, Tanguay RM. 1986. Further characterization of the posttranslational modifications of core histones in response to heat and arsenite stress in Drosophila. Biochem Cell Biol 64(8):750-757.

Desrosiers R, Tanguay RM. 1988. Methylation of Drosophila histones at proline, lysine, and arginine residues during heat shock. J Biol Chem 263(10):4686-4692.

Drobna Z, Naranmandura H, Kubachka KM, Edwards BC, Herbin-Davis K, Styblo M, et al. 2009. Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters

the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem Res Toxicol 22(10):1713-1720.

Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. 2005. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495-528.

Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK, et al. 2001.

DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum

Mol Genet 10(26):3001-3007.

Esteve PO, Chin HG, Pradhan S. 2007. Molecular mechanisms of transactivation and doxorubicin-mediated repression of survivin gene in cancer cells. J Biol Chem 282(4):2615-2625.

Feinberg AP, Tycko B. 2004. The history of cancer epigenetics. Nat Rev Cancer 4(2):143-153.

Flora SJ, Bhadauria S, Kannan GM, Singh N. 2007. Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28(2 Suppl):333-347.

Fournier A, Florin A, Lefebvre C, Solly F, Leroux D, Callanan MB. 2007. Genetics and epigenetics of 1q rearrangements in hematological malignancies. Cytogenet Genome Res 118(2-4):320-327.

Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, et al. 2007. Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet 3(11):e207.

Fu HY, Shen JZ. 2005. [Hypermethylation of CpG island of p16 gene and arsenic trioxide induced p16 gene demethylation in multiple myeloma.]. Zhonghua Nei Ke Za Zhi 44(6):411-414.

Fu HY, Sheng JZ, Sheng SF, Zhou HR. 2007. [n-MSP detection of p16 gene demethylation and transcription in human multiple myeloma U266 cell line induced by arsenic trioxide]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 15(1):79-85.

Glozak MA, Seto E. 2007. Histone deacetylases and cancer. Oncogene 26(37):5420-5432.

Goering PL, Aposhian HV, Mass MJ, Cebrian M, Beck BD, Waalkes MP. 1999. The enigma of arsenic carcinogenesis: role of metabolism. Toxicol Sci 49(1):5-14.

He L, Hannon GJ. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522-531.

He L, He X, Lowe SW, Hannon GJ. 2007. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat Rev Cancer 7(11):819-822.

Hegedus CM, Skibola CF, Warner M, Skibola DR, Alexander D, Lim S, et al. 2008.

Decreased urinary beta-defensin-1 expression as a biomarker of response to arsenic. Toxicol Sci 106(1):74-82.

Hei TK, Filipic M. 2004. Role of oxidative damage in the genotoxicity of arsenic. Free Radic Biol Med 37(5):574-581.

Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L. 2007. Phosphorylation of histone H3 in plants--a dynamic affair. Biochim Biophys Acta 1769(5-6):308-315.

IARC. 1987. Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum Suppl 7:1-440.

IARC. 2004. Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risk Hum 84:1-477.

Illingworth R, Kerr A, Desousa D, Jorgensen H, Ellis P, Stalker J, et al. 2008. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6(1): e22.

Jackson RJ, Standart N. 2007. How do microRNAs regulate gene expression? Sci STKE 2007(367):re1.

Jacobson-Kram D, Montalbano D. 1985. The reproductive effects assessment group's report on the mutagenicity of inorganic arsenic. Environ Mutagen 7(5):787-804.

Jensen TJ, Novak P, Eblin KE, Gandolfi AJ, Futscher BW. 2008. Epigenetic remodeling during arsenical-induced malignant transformation. Carcinogenesis 29(8):1500-1508.

Jensen TJ, Novak P, Wnek SM, Gandolfi AJ, Futscher BW. 2009a. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol. 241(2):221-229.

Jensen TJ, Wozniak RJ, Eblin KE, Wnek SM, Gandolfi AJ, Futscher BW. 2009b. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation. Toxicol Appl Pharmacol 235(1):39-46.

Jo WJ, Ren X, Chu F, Aleshin M, Wintz H, Burlingame A, et al. 2009. Acetylated H4K16 by MYST1 protects UROtsa cells from the carcinogen arsenic and is decreased following chronic arsenic exposure. Toxicol Appl Pharmacol 241(3):294-302.

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. 2005. RAS is regulated by the let-7 microRNA family. Cell 120(5):635-647.

Jones PA, Baylin SB. 2002. The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415-428.

Jongen WM, Cardinaals JM, Bos PM, Hagel P. 1985. Genotoxicity testing of arsenobetaine, the predominant form of arsenic in marine fishery products. Food Chem Toxicol 23(7):669-673.

Kasashima K, Nakamura Y, Kozu T. 2004. Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun 322(2):403-410.

Ke Q, Li Q, Ellen TP, Sun H, Costa M. 2008. Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNK-MAPK pathway. Carcinogenesis 29(6):1276-1281.

Kitchin KT, Wallace K. 2008. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis. Toxicol Appl Pharmacol 232(2):252-257.

Klose RJ, Zhang Y. 2007. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8(4):307-318.

Kouzarides T. 2007. Chromatin modifications and their function. Cell 128(4):693-705.

Lewis BP, Burge CB, Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15-20.

Li J, Chen P, Sinogeeva N, Gorospe M, Wersto RP, Chrest FJ, et al. 2002. Arsenic trioxide promotes histone H3 phosphoacetylation at the chromatin of CASPASE-10 in acute promyelocytic leukemia cells. J Biol Chem 277(51):49504-49510.

Li J, Gorospe M, Barnes J, Liu Y. 2003. Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts. J Biol Chem 278(15):13183-13191.

Liu J, Yu L, Tokar EJ, Bortner C, Sifre MI, Sun Y, et al. 2008. Arsenic-induced aberrant gene expression in fetal mouse primary liver-cell cultures. Ann N Y Acad Sci 1140:368-375.

Loenen WA. 2006. S-adenosylmethionine: jack of all trades and master of everything? Biochem Soc Trans 34(Pt 2):330-333.

Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251-260.

Lukiw WJ, Pogue AI. 2007. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101(9):1265-1269.

Majumdar S, Chanda S, Ganguli B, Mazumder DN, Lahiri S, Dasgupta UB. 2010. Arsenic exposure induces genomic hypermethylation. Environ Toxicol 25(3):315-318

Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH. 2007. Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99(12):920-928.

Marsit CJ, Eddy K, Kelsey KT. 2006a. MicroRNA responses to cellular stress. Cancer Res 66(22):10843-10848.

Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, et al. 2006b. Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27(1):112-116.

Marsit CJ, Karagas MR, Schned A, Kelsey KT. 2006c. Carcinogen exposure and epigenetic silencing in bladder cancer. Ann N Y Acad Sci 1076:810-821.

Martin C, Zhang Y. 2005. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6(11):838-849.

Mass MJ, Wang L. 1997. Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res 386(3):263-277.

McCabe DC, Caudill MA. 2005. DNA methylation, genomic silencing, and links to nutrition and cancer. Nutr Rev 63(6 Pt 1):183-195.

McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB. 2006. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 66(7):3541-3549.

miRBase. 2009. miRBase database (release 14). Available: http://www.mirbase.org/ [accessed 5 January 2010].

Moore LE, Smith AH, Eng C, Kalman D, DeVries S, Bhargava V, et al. 2002. Arsenic-related chromosomal alterations in bladder cancer. J Natl Cancer Inst 94(22):1688-1696.

Moore LE, Smith AH, Hopenhayn-Rich C, Biggs ML, Kalman DA, Smith MT. 1997a. Micronuclei in exfoliated bladder cells among individuals chronically exposed to arsenic in drinking water. Cancer Epidemiol Biomarkers Prev 6(1):31-36.

Moore MM, Harrington-Brock K, Doerr CL. 1997b. Relative genotoxic potency of arsenic and its methylated metabolites. Mutat Res 386(3):279-290.

Muto S, Horie S, Takahashi S, Tomita K, Kitamura T. 2000. Genetic and epigenetic alterations in normal bladder epithelium in patients with metachronous bladder cancer. Cancer Res 60(15):4021-4025.

NIH. 2007. NIH Roadmap for Medical Research (Epigenomics). Available: http://nihroadmap.nih.gov/epigenomics/index.asp/ [accessed 30 March 2010].

Okoji RS, Yu RC, Maronpot RR, Froines JR. 2002. Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BL/6J mice. Carcinogenesis 23(5):777-785.

Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669-80..

Pershagen G. 1981. The carcinogenicity of arsenic. Environ Health Perspect 40:93-100.

Peterson CL, Laniel MA. 2004. Histones and histone modifications. Curr Biol 14(14):R546-551.

Petrick JS, Jagadish B, Mash EA, Aposhian HV. 2001. Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 14(6):651-656.

Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, et al. 2007. Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86(4):1179-1186.

Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, et al. 2009. Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ Health Perspect 117(2):254-260.

Pogribny IP, Tryndyak VP, Boyko A, Rodriguez-Juarez R, Beland FA, Kovalchuk O. 2007. Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure. Mutat Res 619(1-2):30-37.

Ramirez T, Brocher J, Stopper H, Hock R. 2008. Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 117(2):147-157.

Razin A, Riggs AD. 1980. DNA methylation and gene function. Science 210(4470):604-610.

Reichard JF, Schnekenburger M, Puga A. 2007. Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 352(1):188-192.

Robertson KD. 2005. DNA methylation and human disease. Nat Rev Genet 6(8):597-610.

Robertson KD, Wolffe AP. 2000. DNA methylation in health and disease. Nat Rev Genet 1(1):11-19.

Rosser CJ, Liu L, Sun Y, Villicana P, McCullers M, Porvasnik S, et al. 2009. Bladder cancer-associated gene expression signatures identified by profiling of exfoliated urothelia. Cancer Epidemiol Biomarkers Prev 18(2):444-453.

Rossman TG, Uddin AN, Burns FJ. 2004. Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol Appl Pharmacol 198(3):394-404.

Saumet A, Vetter G, Bouttier M, Portales-Casamar E, Wasserman WW, Maurin T, et al. 2009. Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia. Blood 113(2):412-421.

Schaefer CB, Ooi SK, Bestor TH, Bourc'his D. 2007. Epigenetic decisions in mammalian germ cells. Science 316(5823):398-399.

Schembri F, Sridhar S, Perdomo C, Gustafson AM, Zhang X, Ergun A, et al. 2009. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci U S A 106(7):2319-2324.

Schneider R, Bannister AJ, Kouzarides T. 2002. Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem Sci 27(8):396-402.

Schones DE, Zhao K. 2008. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 9(3):179-91.

Sciandrello G, Caradonna F, Mauro M, Barbata G. 2004. Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis 25(3):413-417.

Shah YM, Morimura K, Yang Q, Tanabe T, Takagi M, Gonzalez FJ. 2007. Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol 27(12):4238-4247.

Shao W, Fanelli M, Ferrara FF, Riccioni R, Rosenauer A, Davison K, et al. 1998. Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells. J Natl Cancer Inst 90(2):124-133.

Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, et al. 1992. Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259-267.

Smith AH, Hopenhayn-Rich C, Warner M, Biggs ML, Moore L, Smith MT. 1993. Rationale for selecting exfoliated bladder cell micronuclei as potential biomarkers for arsenic genotoxicity. J Toxicol Environ Health 40(2-3):223-234.

Smith AH, Steinmaus CM. 2009. Health effects of arsenic and chromium in drinking water: recent human findings. Annu Rev Public Health 30:107-122.

Sohel N, Persson LA, Rahman M, Streatfield PK, Yunus M, Ekström EC, Vahter M. 2009. Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology 20(6):824-30.

Sterner DE, Berger SL. 2000. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64(2):435-459.

Styblo M, Drobna Z, Jaspers I, Lin S, Thomas DJ. 2002. The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Perspect 110 Suppl 5:767-771.

Sun CQ, Arnold R, Fernandez-Golarz C, Parrish AB, Almekinder T, He J, et al. 2006. Human beta-defensin-1, a potential chromosome 8p tumor suppressor: control of transcription and induction of apoptosis in renal cell carcinoma. Cancer Res 66(17):8542-8549.

Swank RA, Th'ng JP, Guo XW, Valdez J, Bradbury EM, Gurley LR. 1997. Four distinct cyclin-dependent kinases phosphorylate histone H1 at all of its growth-related phosphorylation sites. Biochemistry 36(45):13761-13768.

Takahashi M, Barrett JC, Tsutsui T. 2002. Transformation by inorganic arsenic compounds of normal Syrian hamster embryo cells into a neoplastic state in which they become anchorage-independent and cause tumors in newborn hamsters. Int J Cancer 99(5):629-634.

Urdinguio RG, Sanchez-Mut JV, Esteller M. 2009. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8(11):1056-1072.

Uthus EO, Davis C. 2005. Dietary arsenic affects dimethylhydrazine-induced aberrant crypt formation and hepatic global DNA methylation and DNA methyltransferase activity in rats. Biol Trace Elem Res 103(2):133-145.

Waalkes MP, Liu J, Chen H, Xie Y, Achanzar WE, Zhou YS, et al. 2004. Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst 96(6):466-474.

Wightman B, Ha I, Ruvkun G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855-862.

Wysocka J, Allis CD, Coonrod S. 2006. Histone arginine methylation and its dynamic regulation. Front Biosci 11:344-355.

Xie Y, Liu J, Benbrahim-Tallaa L, Ward JM, Logsdon D, Diwan BA, et al. 2007. Aberrant DNA methylation and gene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenic dose of inorganic arsenic. Toxicology 236(1-2):7-15.

Xie Y, Trouba KJ, Liu J, Waalkes MP, Germolec DR. 2004. Biokinetics and subchronic toxic effects of oral arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid in v-Haras transgenic (Tg.AC) mice. Environ Health Perspect 112(12):1255-1263.

Yan MS, Matouk CC, Marsden PA. 2010. Epigenetics of the Vascular Endothelium. J Appl Physiol 22:22. doi:10.1152/japplphysiol.00131.2010

Yoder JA, Walsh CP, Bestor TH. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335-340.

Zhang A, Feng H, Yang G, Pan X, Jiang X, Huang X, et al. 2007a. Unventilated indoor coal-fired stoves in Guizhou province, China: cellular and genetic damage in villagers exposed to arsenic in food and air. Environ Health Perspect 115(4):653-658.

Zhang AH, Bin HH, Pan XL, Xi XG. 2007b. Analysis of p16 gene mutation, deletion and methylation in patients with arseniasis produced by indoor unventilated-stove coal usage in Guizhou, China. J Toxicol Environ Health A 70(11):970-975.

Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. 1997. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A 94(20):10907-10912.

Zhou GB, Zhao WL, Wang ZY, Chen SJ, Chen Z. 2005. Retinoic acid and arsenic for treating acute promyelocytic leukemia. PLoS Med 2(1):e12.

Zhou X, Li Q, Arita A, Sun H, Costa M. 2009. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 236(1):78-84.

Zhou X, Sun H, Ellen TP, Chen H, Costa M. 2008. Arsenite alters global histone H3 methylation. Carcinogenesis 29(9):1831-1836.

Zykova TA, Zhu F, Lu C, Higgins L, Tatsumi Y, Abe Y, et al. 2006. Lymphokine-activated killer T-cell-originated protein kinase phosphorylation of histone H2AX prevents arsenite-induced apoptosis in RPMI7951 melanoma cells. Clin Cancer Res 12(23):6884-6893.

Table 1. Arsenic Exposure and Global DNA Methylation

	Arsenicals	Dose	Time (Weeks)	Global DNA methylation	References
Human Cells					
Human prostate epithelial cell line RWPE-1	As^{III}	5 μΜ	16	Нуро	Coppin et al. 2008
Human prostate epithelial cell line RWPE-1	As ^{III}	5 μΜ	29	Нуро	Benbrahim-Tallaa et al. 2008
Human HaCaT keratinocytes	As^{III}	0.2 μΜ	4	Нуро	Reichard et al. 2007
Animal Cells					
TRL 1215 rat liver epithelial cell line	As^{III}	125-500 nM	18	Нуро	Zhao et al. 1997
V79-C13 Chinese hamster cells	As^{III}	10 μΜ	8	Нуро	Sciandrello et al. 2004
Animal Studies					
Goldfish	As^{III}	200 μΜ	1	Нуро	Bagnyukova et al. 2007
Fisher 344 Rat	As^{III}	50 μg/G	12	Нуро	Uthus and Davis 2005
129/SvJ mice	As^{III}	45 ppm	49	Нуро	Chen et al. 2004
C3H mice	As^{III}	85 ppm	1.5	Нуро	Waalkes et al. 2004
C57BL/6J mice	As^{III}	2.6-14.6 µg/G	18.5	Нуро	Okoji et al. 2002
Homozygous Tg.AC mice	As^{III}	150 ppm	17	Нуро	Xie et al. 2004
	As^{V}	200 ppm			
	$\mathbf{MMA}^{\mathrm{V}}$	1500 ppm			
	DMA^{V}	1200 ppm			
Human Subjects*					
Human	As ^{III}	2-250 μg/L	None [#]	Hyper	Pilsner et al. 2007 Majumdar et al. 2009
Human	As ^{III}	2-250 μg/L	None [#]	Hypo (in Skin lesion patients)	Pilsner et al. 2009

^{*} More information was provided in the main text. *Data not available

Table 2. Arsenic Exposure and Gene-Specific (promoter) Methylation Status

	Arsenicals	Dose	Time	G	References	
			(Weeks)	Hyper	Нуро	-
Human Cells						
Human UROtsa cells	As ^{III} MMA ^{III}	1 μM 50 nM	9	DBC1, FAM83A, ZSCAN12 & C1QTNF6		Jensen et al. 2008
Human uroepithelial SV-HUC-1 cells	As^{III}	2, 4, & 10 μΜ	24 or 52	\widetilde{DAPK}		Chai et al. 2007
Human myeloma cell line U266	As^{III}	1 and 2 μM	0.4	P16		Fu and Shen 2005
Human lung adenocarcinoma A549 cells	As^{III}	0.08-2 μΜ	0.3	P53		Mass and Wang 1997
	As^{V}	30-300 μΜ	0.3			
Animal Cells						
Syrian hamster embryo cells	As^{III}	3-10 μΜ	0.3		c-myc & c-Ha-ras	Takahashi et al. 2002
	As^{V}	50-150 μΜ	0.3			
TRL 1215 rat liver epithelial cells	As^{III}	125-500 nM	8 or 18		c-myc	Chen et al. 2001
Animal Studies						
C57BL/6J mice	As^{III}	2.6-14.6µg/G	18.5		c-Ha-ras	Okoji et al. 2002
A/J mice	As^{V}	100 ppm	74	p16 & RASSF1		Cui et al. 2006
C3H mice	As^{III}	85 ppm	1.4		ER-alpha	Waalkes et al. 2004
Human Subjects						
Human	As^{III}	None*	None*	DAPK		Chen et al. 2007
Human	As^{III}	Variable [#]	None*	p53&P16		Chanda et al. 2006
Human	As^{III}	None*	None*	p16		Zhang et al. 2007b
Human	As ^{III}	Variable^	None*	RASSF1A & PRSS3		Marsit et al. 2006b

^{*} Data not available

[#] Study subjects were grouped based on historical arsenic concentration in drinking water, and the range of arsenic concentration in drinking water was from < 50μg/L to >300μg/L.

^ The toenail arsenic concentration of study subjects was estimated from <0.01μg/L to >50 μg/L.

Figure Legends

Figure 1, Simplified scheme of SAM synthesis and its involvement in arsenic and DNA methylation. Human arsenic metabolic pathway involves multiple steps and here shows the intermediate steps and metabolites.

Figure 2, Histone modifications affected by As^{III} and MMA^{III} exposure. The structure of a nucleosome is shown and major posttranscriptional histone modifications are listed on the left. Modifications of specific histone proteins that were reported in the literature as altered by arsenic exposure are listed on the right.

Figure 1

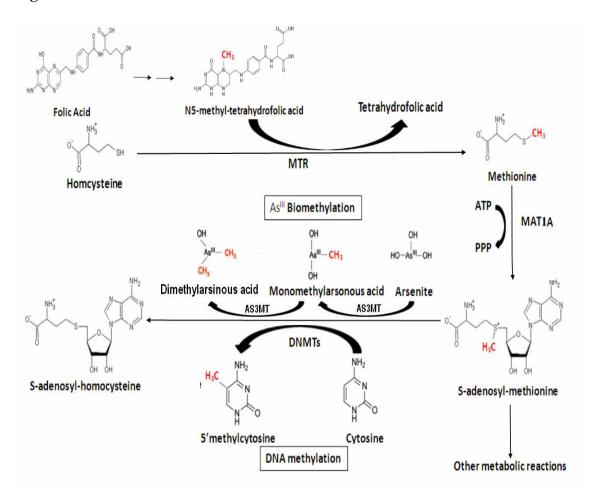
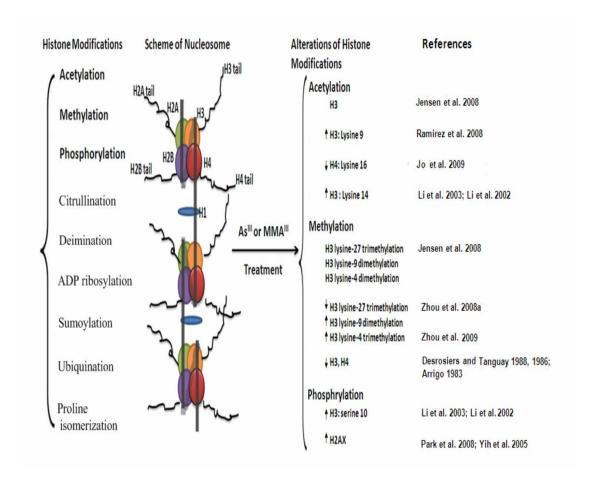



Figure 2

