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A comparison of the cytogenetic alterations and global DNA hypomethylation induced
by the benzene metabolite, hydroquinone, with those induced by melphalan and

etoposide
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Specific cytogenetic alterations and changes in DNA methyla-
tion are involved in leukemogenesis. Benzene, an established
human leukemogen, is known to induce cytogenetic changes
through its active metabolites including hydroquinone (HQ),
but the specific alterations have not been fully characterized.
Global DNA hypomethylation was reported in a population
exposed to benzene, but has not been confirmed in vitro. In this
study, we examined cytogenetic changes in chromosomes 5, 7,
8, 11 and 21, and global DNA methylation in human TK6
lymphoblastoid cells treated with HQ for 48 h, and compared
the HQ-induced alterations with those induced by two well-
known leukemogens, melphalan, an alkylating agent, and
etoposide, a DNA topoisomerase Il inhibitor. We found that
rather than inducing cytogenetic alterations distinct from those
induced by melphalan and etoposide, HQ induced alterations
characteristic of each agent. HQ induced global DNA hypo-
methylation at a level intermediate to melphalan (no effect) and
etoposide (potent effect). These results suggest that HQ may
act similar to an alkylating agent and also similar to a DNA
topoisomerase Il inhibitor in living cells, both of which may be
potential mechanisms of benzene toxicity. In addition to
cytogenetic changes, global DNA hypomethylation may
be another mechanism underlying the leukemogenicity of
benzene.
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Introduction

Specific cytogenetic alterations are commonly observed in
patients with myelodysplastic syndromes (MDS) and acute
myeloid leukemia (AML), and are also characteristic of
therapy-related MDS and AML (t-MDS and t-AML)." For
example, loss of whole chromosomes 5 and 7 (=5 and —7) or
partial long-arm deletion of these two chromosomes [del(5q)
and del(7qg)] commonly occurs in t-MDS/AML associated with
treatment with alkylating agents, such as melphalan, whereas
translocations of chromosomes 11 [t(11;2)] and 21 [t(21;?)] are
hallmarks of -MDS/AML associated with DNA topoisomerase |l
(topo I1) inhibitors, such as etoposide.'? Gain of chromosomes 8
and 21 (+8 and +21) and translocations between 8 and 21
[t(8;21)] are also common in MDS/AML patients.>™> These
specific cytogenetic alterations are generally thought to be
causal in human leukemogenesis.
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As well as cytogenetic aberrations, altered DNA methylation
may have an important role in the pathogenesis of AML. DNA
methylation, the addition of a methyl group at the C-5 position
of cytosine in CpG dinucleotides, is one of the most common
epigenetic events in the mammalian genome and has a critical
role in controlling gene expression and in maintaining genome
stability.® Global DNA hypomethylation and promoter hyper-
methylation of tumor suppressor genes are frequently observed
in hematological malignancies.”

Altered cytogenetics and DNA methylation are also thought to
be potential mechanisms underlying the leukemogenesis asso-
ciated with benzene. Benzene, an important industrial chemical
and universal environmental pollutant, is an established human
leukemogen,® which causes MDS and AML? and probably
causes non-Hodgkin’s lymphoma.'® Benzene is known to
induce cytogenetic changes through its active metabolites
including hydroquinone (HQ), but the characteristic alterations
have not been fully characterized.' Global DNA hypomethyla-
tion was reported in gas station attendants and traffic police
officers exposed to low levels of benzene.'? As the subjects may
have been co-exposed to other chemicals, an in vitro study with
benzene metabolites would help to clarify the association.

In order to shed further light on the mechanisms of benzene-
induced leukemogenesis, we examined cytogenetic changes in
chromosomes 5, 7, 8, 11 and 21, and global DNA methylation
in a human lymphoblastoid cell line, TK6, treated with the
benzene metabolite, HQ, for 48h, and compared the results
with those induced by the alkylating agent, melphalan, and the
DNA topoisomerase inhibitor, etoposide, both of which are
associated with t-AML.

Materials and methods

Cell culture, chemical treatment and cytotoxicity

The human lymphoblastoid cell line, TK6, was maintained in
RPMI 1640 medium (GIBCO, San Diego, CA, USA) containing
10% fetal bovine serum (Omega Scientific, Tarzana, CA, USA)
and 1% penicillin and streptomycin (Omega Scientific) at 37 °C
in a 5% CO, moist atmosphere. HQ (>99%) was dissolved in
sterile 1 x phosphate-buffered saline (PBS) immediately before
treatment for all experiments. Melphalan (>95%) and etoposide
(>98%) were dissolved in dimethyl sulfoxide and stored at
—20°C. The final concentration of dimethy! sulfoxide present in
cell cultures was 0.1%. The DNA methylation inhibitor, 5-aza-
2'-deoxycytidine (>97%), was dissolved in sterile 1 x PBS and
stored at —20 °C, which served as a positive control for global
DNA methylation tests. All chemicals were purchased from
Sigma-Aldrich (St Louis, MO, USA). We treated the TK6 cells
with HQ (0, 2.5, 5, 10, 15 or 20 um), melphalan (0, 0.5, 1, 1.5,
2, 4 uMm) or etoposide (0, 0.05, 0.1, 0.2, 0.4 pm) for 48 h, which is
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equivalent to about three cell cycles, in order to detect stable
effects that could be passed on to future generations of cells.
Cytotoxicity was measured by the trypan blue exclusion assay.

Cytogenetic assay
Metaphase preparation. Colcemid (0.1 pg/ml, Invitrogen,
Carlsbad, CA, USA) was added to each culture 2h before
harvesting in order to obtain a sufficient number of metaphase
spreads. After hypotonic treatment (0.075M KCI) for 30 min at
37°C, the cells were fixed three times with freshly prepared
Carnoy’s fixative (methanol/glacial acetic acid=3:1). The fixed
cells were dropped onto glass slides, which were air-dried and
stored at —20 °C under a nitrogen atmosphere until use.
Fluorescence in situ hybridization (FISH): A novel FISH assay
was designed to simultaneously detect numerical chromosome
alterations (NCA) and structural chromosome alterations (SCA)
in chromosomes 5, 7, 8 and 21 of the same metaphase spread,
in particular leukemia-specific cytogenetic alterations, such as
=5, =7, +8, +21, del(5q), del(7qg), 1(8;21) and t(21;?). Locus-
specific probes for chromosome 5 (5p15.2—SpectrumGreen,
5g31—SpectrumOrange; 1pl) and chromosome 7 (centromere
—SpectrumGreen, 7q31—SpectrumOrange; 1 pl), whole chro-
mosome painting probes for chromosome 8 (SpectrumGreen;
1ul) and chromosome 21 (SpectrumOrange; 1pl) were mixed
with 6 pl hybridization buffer and applied to a 22 x 22 mm area.
A whole chromosome painting probe for chromosome 11 was
used to detect cytogenetic alterations in chromosome 11, in
particular t(11;?), the specific cytogenetic change commonly
observed in therapy-related leukemia patients who received
etoposide treatments. All the probes and hybridization buffer
were purchased from Vysis (Downers Grove, IL, USA). The
scoring criteria was previously described in detail."*

Global DNA methylation assay

Genome DNA isolation. After the treatment, TK6 cells were
spun down and washed once with sterile 1 x PBS. The cells
were pelleted and stored at —80°C until DNA isolation.
Genome DNA was isolated using QlAamp DNA Mini Kit
(QIAGEN, Valencia, CA, USA), following the manufacturer’s
protocol. DNA concentration was determined using a Nano-
Drop ND-1000 Spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA). The samples were then aliquoted and
stored at —80 °C until use.

Global DNA methylation. An immunochemistry-based method
was set up to determine the global DNA methylation level.
Briefly, the black polystyrene 96-well microplate (Corning,
catalogue no. 3924, Corning, NY, USA) was coated with 0.01%
poly-L-lysine (Sigma-Aldrich) at room temperature for 2 h. The
coated microplate was stored at 4 °C for at least 14 days to make
it highly hydrophobic. The DNA samples (5ng/ul) were
denatured at 95°C for 10min, and then chilled on ice for
10min. The samples (200 ng/well, six replicates per sample)
were loaded and then briefly spun to evenly cover the well
bottom. After the wells were dried by incubation at 37°C
overnight with no humidity, they were washed twice with 1 x
PBS containing 0.1% Tween-20 and then blocked with 2%
bovine serum albumin at 37°C for 60min. Mouse anti-5-
methylcytosine antibody (CALBIOCHEM, EMD Chemicals,
catalogue no. NA81, San Diego, CA, USA) at 1pg/ml was
added, then briefly spun to evenly cover the well bottom. The
wells were sealed with parafilm and incubated at 37°C for
60 min, followed by three washes with 1 x PBS containing
0.1% Tween-20. Secondary antibody conjugated with
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fluorescein isothiocyanate (Jackson ImmunoResearch Labora-
tories, catalogue no. 115-095-003, West Grove, PA, USA) at
1.5 pg/ml was added, and the wells were sealed with parafilm
and incubated at 37°C for 60min, followed again by three
washes of 1 x PBS containing 0.1% Tween-20. The plate was
read by FLx 800 Fluorescence Microplate Reader (BioTek
Instruments, Winooski, VT, USA) using excitation (filter
485 £20nm and emission filter 528 £ 20 nm. The fluorescence
intensity of one sample was calculated as the average of six
replicates, and the methylation level of each dose was
calculated as relative percentage of the fluorescence intensity
to control. The DNA methylation inhibitor, 5-aza-2’-deoxy-
cytidine, served as positive control.

Statistical analysis

Poisson regression and linear regression were applied to
calculate the P-value of the dose-response relationship for the
cytogenetic end points and global DNA methylation,
respectively.

Results

Cytogenetic and global DNA methylation changes
induced by melphalan in TK6 cells
We applied FISH to examine the cytogenetic alterations in
chromosomes 5, 7, 8, 11 and 21 induced by melphalan in TK6
cells. As shown in Figures 1a and b, melphalan dose-
dependently induced —5, —7 and del(5q) cytogenetic alterations
characteristic of t-MDS/AML associated with treatment with
alkylating agents (P<0.0001 for all). Melphalan also increased
del(7q), another cytogenetic alteration characteristic of alkylat-
ing agents, but the increase was not statistically significant. +8
and +21 were also significantly increased in a dose-dependent
manner (P<0.0001 for both). As expected, t(11;?) and t(21;?),
the cytogenetic hallmarks of DNA topo Il inhibitors, were not
significantly changed by melphalan treatments. (8;21), another
specific translocation commonly observed in MDS/AML pa-
tients, was not detected in the melphalan-treated cultures.
Global DNA methylation level was determined by an
immunochemistry-based method. The DNA methylation inhi-
bitor, 5-aza-2'-deoxycytidine, potently decreased the global
DNA methylation level in TK6 cells (Figure 1d), validating the
assay. As shown in Figure 1c, melphalan did not significantly
change the global DNA methylation level in TK6 cells, even at
doses producing high cytotoxicity (data not shown).

Cytogenetic and global DNA methylation changes
induced by etoposide in TK6 cells

As expected, etoposide significantly induced t(11;?) and t(21;2),
the two specific cytogenetic alterations commonly observed in t-
AML associated with prior topo Il inhibitor treatment, in a dose-
dependent manner (P<0.0001 and P<0.05, respectively)
(Figures 2a and b). Other leukemia-specific changes, including
-5, +8, +21, del(5q) and del(7q), were also significantly
increased. t(8;21) was not detected at the doses tested.

In contrast to melphalan, etoposide potently induced global
DNA hypomethylation in TK6 cells in a dose-dependent manner
(P<0.0001) (Figure 2c). The average global DNA methylation
levels relative to the control at 0.05, 0.1, 0.2 and 0.4 puMm
etoposide were 76, 60, 47 and 35%, respectively.
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Leukemia-specific cytogenetic alterations and changes in global DNA methylation in TK6 cells treated with melphalan. (a) Leukemia-

specific NCA; (b) leukemia-specific SCA. Two independent experiments were conducted and 1000 metaphases were scored for each dose in each
experiment. Data presented are mean frequency (%), and error bar represents standard deviation. P represents the P-value of the dose-response
test. (c) Global DNA methylation in TK6 cells treated with melphalan. Six independent experiments were conducted; (d) global DNA methylation
in TK6 cells treated with the positive control, 5-aza-2’-deoxycytidine. Three independent experiments were conducted. Data presented are mean
global DNA methylation level relative to the control (%), and error bar represents standard deviation.

Cytogenetic and global DNA methylation changes
induced by HQ in TK6 cells

As shown in Figures 3a and b, HQ dose-dependently induced
del(7q) (P<0.01) and t(21;?) (P<0.05), typically associated with
alkylating agents and topo Il inhibitor treatments, respectively.
+8 and +21 were also significantly increased by HQ (P<0.05
and P<0.001, respectively). A few occurrences of t(8;21) were
detected in 10 and 20pmM HQ, compared with none in the
untreated control cells, which indicated that HQ treatment
might also cause this translocation.

As shown in Figure 3¢, HQ moderately induced global DNA
hypomethylation in TK6 cells in a dose-dependent manner
(P<0.0001). The average global DNA methylation levels
relative to the control at 2.5, 5, 10, 15 and 20 um HQ were
86, 83, 72, 66 and 68%, respectively, which were intermediate
to melphalan (no effect) and etoposide (potent effect).

Discussion

AML and MDS are closely related diseases of the bone marrow
that arise de novo in the general population or following therapy
with alkylating agents, topo Il inhibitors or ionizing radia-
tion."'* Recent research has shown that the chromosome
aberrations and gene mutations detected in therapy-related
and de novo MDS and AML are very similar, although the
frequencies with which they are observed in different subtypes
may differ. Hence, therapy-related and de novo MDS and AML
are considered very similar diseases.'® At least three cytogenetic
subtypes of AML and MDS are commonly observed:'?
(a) unbalanced chromosome aberrations, primarily del(5q)/—5
or del(7q)/—7 and + 8, following therapy with alkylating agents,
such as melphalan; (b) balanced rearrangements, including
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recurrent balanced translocations (for example, t(11¢23;?),
t(8;21) and t(15;17)) or inversions (for example, inv(16)),
resulting from illegitimate gene recombinations associated with
topo Il inhibitors, such as etoposide; and (c) normal karyotype.
Within these three cytogenetic categories, at least eight different
genetic pathways to t-MDS and t-AML have been proposed,
defined by the specific chromosome aberrations present in
each.! The alkylating agents induce t-MDS/AML through path-
way | [del(7q)/—7] and pathway Il [del(5q)/—5], whereas the
topo Il inhibitors act through pathway llI [t(1123;?)], pathway
IV [t21922;9)], pathway V [t(15;17)] and pathway VI
[t(11p15;9)]. Patients with a normal karyotype belong to
pathway VII, and those with uncharacteristic chromosome
aberrations belong to pathway VIII.

Benzene, an important industrial chemical and a ubiquitous
environmental pollutant, is an established human leukemogen.®
Benzene has been shown to be leukemogenic at high doses in
the majority of epidemiological studies. Some studies have
detected an increased leukemia risk at relatively low levels of
exposure. Hayes et al.'” reported the excess leukemia risk at
average levels of less than 10p.p.m. in the large NCI-CAPM
cohort study. Glass and co-workers'® performed a nested case—
control study and found that the risk of leukemia was increased
at cumulative exposures above 2 p.p.m.-years and with intensity
of exposure of highest exposed jobs more than 0.8 p.p.m. We
previously observed decreased white blood cell counts in
workers exposed to <1 p.p.m. airborne benzene, demonstrating
hematotoxic effects of benzene at low occupational expo-
sures.'” Furthermore, no evidence was found of an exposure
threshold below which there was no risk. Occupational
exposure to benzene is widely thought to cause leukemias that
are similar to t-AML and t-MDS."®2° In this study, the benzene
metabolite, HQ, induced cytogenetic changes characteristic of
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Figure 2 Leukemia-specific cytogenetic alterations and changes in
global DNA methylation in TK6 cells treated with etoposide.
(@) Leukemia-specific NCA; (b) leukemia-specific SCA. Two indepen-
dent experiments were conducted and 1000 metaphases were scored
for each dose in each experiment. Data presented are mean frequency
(%), and error bar represents standard deviation. P represents the
P-value of the dose-response test. Data of t(11;?) and t(21;?) were
reported previously.** (c) Global DNA methylation. Four independent
experiments were conducted. Data presented are mean global DNA
methylation level relative to the control (%). Error bar represents
standard deviation. P represents the P-value of the dose-response test.

both melphalan and etoposide. HQ at levels between 5 and
20puM dose-dependently induced del(7g) and t(21;?), cyto-
genetic alterations characteristic of t-MDS/AML melphalan
treatments and etoposide treatment, respectively, in TK6 cells.
According to one recent study,?' the HQ concentration in blood
is about 20-120ng/ml (0.2-1.1pM) in humans exposed to
benzene at 0.19-78.8 mg/m> (0.1-24.7 p.p.m.). However, HQ
accumulates in the bone marrow after benzene exposure.””* In
rats exposed to high dose air benzene, the HQ concentration in
blood is about 0.2-1.8 pM, which is comparable with the level
in exposed humans, whereas in the bone marrow it is about
10-60 pm.%? Thus, the HQ concentrations in the marrow of
highly exposed individuals might reach 10-20pM. The HQ
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Figure 3 Leukemia-specific cytogenetic alterations and changes in
global DNA methylation in TK6 cells treated with HQ. (a) Leukemia-
specific NCA; (b) leukemia-specific SCA. Five independent experi-
ments were conducted and at least 500 metaphases were scored for
each dose in each experiment. Data presented are mean frequency
(%), and error bar represents standard deviation. P represents the
P-value of the dose-response test. Data of t(11;?) and t(21;?) were
reported previously.** (c) Global DNA methylation. Seven indepen-
dent experiments were conducted. Data presented are mean global
DNA methylation level relative to the control (%). Error bar represents
standard deviation. P represents the P-value of the dose-response test.

doses (0, 2.5, 5, 10, 15 and 20 uMm) used in this in vitro study
approximate those in highly exposed workers.

The leukemia-specific cytogenetic changes, +8 and +21,
were induced by all three compounds: HQ, melphalan and
etoposide. Previously, using the comet assay combined with
FISH (comet-FISH), we examined the DNA breakage at
chromosome regions 531 and 11g23 induced by HQ in TK6
cells, and found that HQ induced DNA breakage at both
regions.”* Together, these studies suggest that the specific
cytogenetic alterations induced by HQ overlap with those
induced by both melphalan and etoposide. The benzene
metabolite, HQ, may act similar to an alkylating agent and also
similar to a topo Il inhibitor in living cells, both of which may be
potential mechanisms of benzene toxicity. This is consistent
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with previous studies that HQ can form DNA adducts®>*® and
inhibit topo Il activity.””~>°

Cytogenetic changes are commonly observed in patients with
leukemia related to benzene exposure, benzene poisoning
patients and ‘healthy’ workers exposed to benzene.'' We
previously reported that both the characteristic cytogenetic
alterations associated with alkylating agents, such as -5, —7,
del(5q) and del(7q), and the characteristic changes associated
with topo Il inhibitors, such as t(21;?), were elevated in workers
exposed to benzene.'*?° Thus, benzene may also induce
cytogenetic changes in common with alkylating agents and
DNA topo Il inhibitors in vivo.

An important role for epigenetic changes is also emerging in
the development of leukemia. Global DNA hypomethylation is
frequently observed in hematological malignancies. Loss of
genomic DNA methylation in tumors as compared with their
normal-tissue counterparts was one of the first epigenetic
changes described in human cancer.’’ In this study, HQ
producted an effect on global DNA methylation intermediate
to melphalan and etoposide, with no statistically significant
induction by melphalan and potent induction by etoposide. The
finding that HQ induced global DNA hypomethylation in TK6
cells is consistent with the only report on global DNA
methylation in benzene-exposed human subjects,'?> which
showed that airborne low-level benzene was associated with
global hypomethylation in the peripheral blood DNA of gas
station attendants and traffic police officers. Although the
subjects may have been co-exposed to other chemicals, the
present in vitro study with HQ supports an effect of benzene
metabolites on global DNA methylation.

Global DNA hypomethylation may have an important role in
human leukemogenesis. Currently, there are three mechanisms
by which global DNA hypomethylation may contribute to
carcinogenesis: (a) generation of chromosomal instability;
(b) reactivation of transposable elements; and (c) loss of imprinting.
Regarding (a), hypomethylation of DNA can induce chromatin
decondensation, centromere and telomere abnormalities and
chromosome segregation defects.®” It has been reported that
patients with germline mutations in DNA methyltransferase-3b
have numerous chromosome aberrations.>® Loss of DNA
methylation can also favor mitotic recombination, leading to
deletions and translocations.** Regarding (b), hypomethylation
of DNA can reactivate intragenomic endoparasitic DNA,*> or
transposons, which can be transcribed or translocated to other
genomic regions, thereby further disrupting the genome.
Regarding (c), the loss of methyl groups can affect the expression
of imprinted genes. Loss of imprinting of /GF2 and the tightly
linked H19 locus has been associated with tumorigenesis in a
variety of patients.>®*?” Further studies are necessary to
determine whether the global DNA hypomethylation induced
by HQ acts through one or more of these mechanisms to cause
leukemogenesis.

Further studies are also necessary to determine the mechan-
ism by which the global DNA hypomethylation induced by
benzene and its metabolites occurs. Several mechanisms have
been suggested: (a) DNA damage, including DNA adducts,*®
DNA-strand breaks,*® oxidative DNA lesions*® as well as
alteration of the topological conformation of DNA,*® may
decrease the substrate efficiency of hemimethylated DNA to
accept a methyl group from S-adenosylmethionine; (b) changes
in expression and/or activity of DNA methyltransferase;***' and
(c) alterations in cellular one-carbon metabolism.** It is
generally accepted that loss of genomic methylation induced
by chronic exposure to arsenic occurs mainly through depletion
of S-adenosylmethionine.*> However, S-adenosylmethionine
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depletion is not likely the cause of DNA hypomethylation in
acute chemical exposure. The benzene metabolite, HQ, can
form DNA adducts,?*?® induce oxidative damage in DNA** and
inhibit topo Il activity.?>?”72% Each of these factors produces
DNA-strand breaks. The DNA adducts, oxidative lesions and
strand breaks may decrease the substrate efficiency of hemi-
methylated DNA to accept methyl group from S-adenosyl-
methionine, thus decrease the genomic methylation level. There
is currently no evidence in the literature of alterations in
expression and/or activity of DNA methyltransferase associated
with HQ.

In conclusion, the benzene metabolite, HQ, may act similar
to an alkylating agent and also similar to a topo Il inhibitor in
living cells, both of which may be potential mechanisms of
benzene toxicity. Specific cytogenetic alterations characteristic
of both melphalan and etoposide, along with global DNA
hypomethylation induced by HQ, may be mechanisms con-
tributing to benzene-induced leukemogenesis.
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