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Abstract

We used natural spline (NS) models to investigate nonlinear
relationships between levels of benzene metabolites (E,E-
muconic acid, S-phenylmercapturic acid, phenol, hydroqui-
none, and catechol) and benzene exposure among 386
exposed and control workers in Tianjin, China. After adjust-
ing for background levels (estimated from the 60 control
subjects with the lowest benzene exposures), expected mean
trends of all metabolite levels increased with benzene air
concentrations from 0.03 to 88.9 ppm. Molar fractions for
phenol, hydroquinone, and E,E-muconic acid changed con-
tinuously with increasing air concentrations, suggesting that
competing CYP-mediated metabolic pathways favored E,E-
muconic acid and hydroquinone below 20 ppm and favored
phenol above 20 ppm. Mean trends of dose-specific levels
(Mmol/L/ppm benzene) of E,E-muconic acid, phenol, hydro-
quinone, and catechol all decreased with increasing benzene
exposure, with an overall 9-fold reduction of total metabo-

lites. Surprisingly, about 90% of the reductions in dose-
specific levels occurred below about 3 ppm for each major
metabolite. Using generalized linear models with NS–
smoothing functions (GLM + NS models), we detected
significant effects upon metabolite levels of gender, age,
and smoking status. Metabolite levels were about 20% higher
in females and decreased between 1% and 2% per year of
life. In addition, levels of hydroquinone and catechol were
greater in smoking subjects. Overall, our results indicate
that benzene metabolism is highly nonlinear with increasing
benzene exposure above 0.03 ppm, and that current human
toxicokinetic models do not accurately predict benzene
metabolism below 3 ppm. Our results also suggest that
GLM + NS models are ideal for evaluating nonlinear
relationships between environmental exposures and levels
of human biomarkers. (Cancer Epidemiol Biomarkers Prev
2006;15(11):2246–52)

Introduction

Benzene is an important industrial chemical that is also
ubiquitous in the environment due to emissions from gasoline
and combustion of hydrocarbons and tobacco (1, 2). Occupa-
tional exposure to benzene can cause blood disorders,
including aplastic anemia, myelodisplastic syndrome, and
acute myelogenous leukemia (3, 4). Significant decreases in the
numbers of WBC and platelets have recently been reported in
workers exposed to <1 ppm benzene (5). These toxic effects are
thought to arise from metabolism of benzene, which proceeds
along several lines, as illustrated in Fig. 1. Of the various
metabolites, 1,4-benzoquinone and the muconaldehydes are
regarded as the most toxic species. However, the mechanism
by which benzene causes toxicity and the shape of the
exposure-response relationship are not well understood (6-8).
We recently reported dose-specific urine concentrations of

the major urinary metabolites of benzene (i.e., phenol, catechol,
hydroquinone, and E,E-muconic acid) and a minor metabolite

[S-phenylmercapturic acid (SPMA)] in 250 benzene-exposed
and 139 control workers from Tianjin, China (9). After group-
ing subjects according to their benzene exposures (30 subjects
per group), median metabolite levels increased nonlinearly
with increasing median benzene concentrations between 0.03
and 20 ppm, whereas median dose-specific levels of total
metabolites (Amol/L/ppm benzene) decreased about 10-fold.
We sought a parsimonious statistical model with which to

elaborate on our previous grouped analyses (9) and to
determine effects of significant covariates, such as gender,
age, and smoking status, on the levels of benzene metabolites.
Given the nonlinear relationships involved, we selected NS
as basis functions for these models because they use standard
(least-squares or maximum-likelihood) methods for estimating
variables and for conducting formal tests; they can be used to
represent predictors in final models; and they can easily be
added to generalized linear models (GLM) for considering
covariate effects (10-13). Although GLM + NS models have
been used in time-series studies of health effects associated
with community air pollution (14), we could find no reports
of their applications to characterize exposure-biomarker
relationships.

Materials and Methods

Subject Recruitment and Sample Collection. Exposed and
control subjects, from two shoe-making factories and three
clothes-manufacturing factories, respectively, in Tianjin,
China, were recruited with informed consent as described
previously (5, 9, 15). Exposed and control subjects were
frequency matched by gender. After excluding three control
subjects, who had missing values of at least one metabolite, the
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samples included 250 exposed subjects and 136 control
subjects. Table 1 shows summary statistics for the gender,
age, and smoking status of participants. Demographic data
were obtained by questionnaires at the time of recruitment.
Methods for sampling air and urine were also previously

described (5, 9, 15). Briefly, personal full-shift air measure-
ments were matched with post-shift urine samples from
exposed and control workers. Of the 386 subjects in this
analysis, 139 had repeated measurements of air and urine,
making a total of 617 matched air/urine samples. Among
subjects with repeated measurements, the median number of
paired air and urine samples was three (range, 2-4).
This study was approved by the Institutional Review Boards

of the University of North Carolina, the University of
California, Berkeley, the U.S. National Cancer Institute, and
the Chinese Academy of Preventive Medicine.

Measurements of Air and Urinary Analytes. The methods
of measuring analytes in air and urine were described
previously (9, 15). Briefly, benzene and toluene were measured
in air using passive personal monitors (Organic Vapor
Monitors, 3M, St. Paul, MN) followed by solvent desorption
and gas chromatography (15). Urinary benzene was deter-
mined by gas chromatography-mass spectrometry using head-
space solid-phase microextraction according to Waidyanatha
et al. (16). Urinary phenol, catechol, hydroquinone, E,E-
muconic acid, and SPMA were measured as trimethylsilyl

ether derivatives by gas chromatography-mass spectrometry
according to Waidyanatha et al. (17). Quantitation of all
urinary analytes was based on peak areas relative to the
corresponding isotopically labeled internal standards.
All air samples from control subjects were below the nomi-

nal limits of detection of 0.2 ppm for benzene and 0.3 ppm for
toluene. In addition, some air measurements from exposed
subjects were below the limits of detection (n = 70 for benzene
and 67 for toluene) or were missing (n = 23). Air concentrations
for these samples were predicted from the simple linear
regression of levels of urinary benzene or toluene on the
corresponding air levels (in log scale) as described previously
for benzene (9). The minor metabolite SPMA was not detected
in 30 urine specimens; a value of the limit of detection divided
by the square root of two = 0.591 nmol/L was imputed to these
samples (18).

Statistical Analyses. For subjects with multiple measure-
ments, the estimated geometric mean air and urine concen-
trations were used in all statistical analyses.
Relationships between levels of the urinary metabolites and

the corresponding air concentrations of benzenewere examined
using NS models with 6 knots. Because our analyses were done
with the (natural) log-transformed air and urine levels, knots
represent joints of (logged) air levels of benzene, showing
different polynomial trends. They were assigned using equally
spaced quantiles of the observations (10). We found that 6-knot

Table 1. Demographic characteristics of the study population

Exposure status Gender n (%) Air benzene,
median (range)

Age, median (range) Current smokers, n (%) Smoking intensity*,
median (range)

Control Male 52 (38.2) 3.71 (0.146-533) ppb 27 (18-51) 36 (69.2) 10 (1-40)
Female 84 (61.8) 3.39 (0.146-21.2) ppb 28 (18-51) 3 (3.57) NRc

All 136 (100) 3.48 (0.146-533) ppb 28 (18-51) 39 (28.71) 10 (1-40)
Exposed Male 86 (34.4) 1.05 (0.122-50.2) ppm 23 (18-44) 47 (54.7) 10 (1-30)

Female 164 (65.6) 1.28 (0.017-88.9) ppm 33 (18-52) 5 (3.05) 4.5 (2-10)
All 250 (100) 1.18 (0.017-88.9) ppm 29 (18-52) 52 (20.8) 7 (1-30)

*Average number of cigarettes per day.
cNot reported.

Figure 1. Simplified metabolic
scheme for benzene showing major
pathways.
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models were optimal for these analyses after evaluating
preliminarymodels with 3 to 7 knots. To reduce dimensionality,
insignificant knots (P > 0.10) were removed by stepwise
elimination (19). Each NS model had the form,

E½lnðYm;jÞj lnðXjÞ� ¼ �m;0 þ �m;1 lnðXjÞ

þ
XK

i¼1

�m;2i½lnðXjÞ � �i�3þ ðAÞ

where E[ln(Ym,j)|ln(Xj)] is the conditional mean of ln(Ym,j)
representing the logged level of the mth metabolite (Amol/L)
in the jth subject exposed to benzene at level ln(Xj) (ppm),
and ni is the location of the ith knot (in log-scale of benzene
exposure). The function ½lnðXjÞ � ni�3þ equals ½lnðXjÞ � ni�3 for
positive values and equals zero otherwise. Because metabo-
lite levels from the 60 subjects with the lowest benzene
exposures were used to estimate background levels of these
metabolites (described later), Model A was applied to the
remaining 326 subjects for each benzene metabolite.
Effects of covariates on metabolite levels were determined

using GLM + NS models having the form:

E½lnðYm;jÞj lnðXjÞ� ¼ �m;0 þ �m;1 lnðXjÞ

þ PK

i	¼1
�m;2i	 ½lnðXjÞ � �i	 �3þ þ �m;3k

PK

k¼1
Ckj ðBÞ

where i* indicates the ith knot in the final NS model for
the mth metabolite (m = 1, . . ., 5, representing E,E-muconic
acid, SPMA, phenol, catechol, and hydroquinone, respective-
ly), Ckj is the value of the k th covariate (k = 1,
. . ., K) in the jth subject, and the remaining terms were the
same as for Model A. The following covariates were
evaluated: gender (0, female; 1, male), age (centered around
the estimated mean of 30.2 years, n = 326), smoking status
(0, nonsmoker; 1, smoker), body mass index (centered around
the estimated mean of 22.5 kg/m2, n = 325), co-exposure to
toluene [0, low exposure relative to the median concentration
of 3.29 ppm (n = 326); 1, high exposure], antibiotics used
within 30 days (0, no; 1, yes), and current alcohol
consumption status (0, no; 1, yes). Main effects and two-
way interactions were evaluated using Proc GLMSELECT of
SAS, with backward selection based upon the smallest values
of AICc (20), while retaining gender, age, body mass index,
and smoking status in all models. With these main effects in
the model, no other covariate effects or interactions were
retained in final models.
All statistical analyses were done using SAS software for

Windows v. 9.12 (SAS Institute, Cary, NC).

Molar Fractions and Dose-Specific Metabolism. Let Ym;jjXj

be the conditional mean value of Ym,j , representing the mth
metabolite level in the jth subject, given exposure level Xj

under Model A. The molar fraction of the mth metabolite,
derived from benzene exposure of the jth subject, was

estimated as
ðYm;jjXj�Ym;bÞ

P5
m¼1

ðYm;jjXj�Ym;bÞ, where Ym,b is the background level

of the mth metabolite, and the denominator term represents
‘‘total’’ metabolites from benzene. We assigned values to Ym,b

using the median levels of Ym,j observed in the 60 control
subjects with the lowest benzene exposures (E,E-muconic acid,
1.03 Amol/L; SPMA, 0.002 Amol/L; phenol, 54.4 Amol/L;
catechol, 11.7 Amol/L; hydroquinone, 6.43 Amol/L; ref. 9).
Dose-specific production (Amol/L/ppm benzene) of the mth
metabolite in the jth subject was estimated as (Ym;jjXj

� Ym;bÞ=Xj

where Xj is that subject’s benzene exposure. Negative values
of (Ym;jjXj

� Ym;b) in the above computations were replaced by
zeros. Because the proportions of negative values increased

rapidly with decreasing exposure levels below 0.03 ppm,
molar fractions and dose-specific metabolite levels were only
evaluated for subjects exposed to benzene at or above 0.03
ppm (n = 267). The following percentages of negative values
were observed between 0.03 and 88.9 ppm: E,E-muconic acid,
0.29% and hydroquinone, 14.6%.
Uncertainties in the model predictions of dose-specific

metabolite levels were evaluated via bootstrap resampling
with 500 iterations (implemented with the SAS macro, %boot).
The pool of all observed benzene exposures (each representing
a different subject, n = 386) was sampled, with replacement, to
select a reference group (the 60 lowest observations) and an
exposed group (the 326 remaining observations). Data from
the exposed group (n = 326 observations) were then used to
construct NS models for the various metabolites, as described
above for the original data set.

Results

Natural Spline Models. After removal of nonsignificant
terms from Model A, the following final versions of Model A
were selected for the fivemetabolites (values ofY are in Amol/L,
whereas those of X are in ppm):

E;E�muconic acid : E½lnðYE;E�muconic acid;jÞj lnðXjÞ� ¼ 1:11þ

0:188½lnðXjÞ�þ 0:007½lnðXjÞ� �1�3þ �

0:022½lnðXjÞ � �3�3þ;

SPMA : E½lnðYSPMA;jÞj lnðXjÞ� ¼ �6:16� 0:072½lnðXjÞ� þ

0:040½lnðXjÞ � �1�3þ �

0:077½lnðXjÞ � �2�3þ þ 0:110½lnðXjÞ � �5�3þ;

phenol : E½lnðYphenol;jÞj lnðXjÞ� ¼ 4:21þ

0:009½lnðXjÞ� þ �0:004½lnðXjÞ � �1�3þ;

catechol : E½lnðYcatechol;jÞj lnðXjÞ� ¼ 2:64þ

0:034½lnðXjÞ� þ 0:007½lnðXjÞ � �2�3þ; and

hydroquinone : lnðYhydroquinone;jÞ ¼ 2:01 þ 0:036½lnðXjÞ� þ

0:004½lnðXjÞ � �1�3þ � 0:202½lnðXjÞ � �6�3þ;

where n1 = ln(0.004 ppm), n2 = ln(0.040 ppm), n3 = ln(0.513
ppm), n4 = ln(1.05 ppm), n5 = ln(2.37 ppm), and n6 = ln(13.8
ppm). These models are shown in Fig. 2A to E along with the
corresponding 95% confidence intervals and the individual
observations for the 326 subjects.

Effects of Covariates. Effects of covariates, determined
under Model B after adjustment for benzene exposure, are
summarized in Table 2. Age and/or gender were important
explanatory variables for all five metabolites, with males and
older subjects typically having lower metabolite levels.
Smokers had significantly higher levels of catechol and
hydroquinone, whereas lean subjects (lower body mass index
values) had significantly higher levels of catechol. Co-exposure
to toluene was not significant in any of the models. Likewise,
alcohol consumption was not a significant predictor of any
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benzene metabolite, either in all subjects (n = 326, including 95
current drinkers) or in male subjects (n = 118, including 88
current drinkers).

Molar Fractions and Dose-Specific Metabolism. The
background-adjusted urine concentration of the mth benzene
metabolite in the jth subject [i.e., (Ym;jjXj

� Ym;b ) increased
monotonically with benzene exposure from 0.03 to 88.9 ppm,
as shown in Fig. 3A. The corresponding molar fractions [i.e.,
ðYm;jjXj�Ym;bÞ

P5
m¼1

ðYm;jjXj�Ym;bÞ] are plotted versus benzene exposure in Fig. 3B.

Molar fractions for E,E-muconic acid and hydroquinone
increased 3-fold (4-12%) and 4-fold (3-11%), respectively, with
benzene exposure from 0.03 to 20 ppm, and then decreased
with benzene exposure above 20 ppm. The molar fraction of
phenol showed the opposite behavior, with reduction from
about 88% to 68%, for benzene exposures between 0.03 and
20 ppm, followed by increases above 20 ppm. Molar fractions
for catechol and SPMA remained fairly constant, at about 6%
and <1%, respectively, over the whole range of benzene levels,
with some upwards curvature above 20 ppm.
As shown in Fig. 4, dose-specific metabolite levels [values of

ðYm;jjXj
� Ym;bÞ=Xj ], decreased with increasing benzene expo-

sure for all but the minor product SPMA. At air concentrations
above 20 ppm, shifts in dose-specific metabolism are apparent,
with decreasing values for E,E-muconic acid and hydroqui-
none and increasing values for phenol, catechol, and SPMA.
Uncertainties in model predictions of dose-specific metabolite
levels are indicated in Fig. 4 by spaghetti plots from the 500
realizations of bootstrap resampling, along with interquartile

ranges, and 95% confidence intervals. Although the 95%
confidence intervals tended to be large for phenol, hydroqui-
none, and catechol at low benzene exposures (<0.1 ppm),
interquartile ranges were very modest for all metabolites over
the entire range of predicted benzene exposures (0.03-88.9
ppm). In addition, the median values from bootstrap analyses
were very close to predictions from the NS models applied to
the original 386 subjects in our study.

Discussion

This study of 386 workers in Tianjin, China represents the most
extensive set of measurements reported to date for paired air
and urine samples from benzene-exposed workers and
matched controls. We previously published the empirical
relationships between urinary metabolite levels and benzene
exposure, based upon groups of these same subjects who had
been aggregated by their exposure levels (9). Those prelimi-
nary analyses defined crude shapes of the exposure-biomarker
relationships but did not permit expected metabolite levels to
be predicted at given air concentrations of benzene, nor did
they allow effects of age, gender, and other covariates to be
estimated, after adjusting for benzene exposure. In the current
study, we found that GLM + NS models were ideal for
characterizing the continuous relationships between metabo-
lite levels and benzene exposures (Fig. 2) and for testing effects
of demographic factors (Table 2). Moreover, using GLM + NS
models, we avoided problems that have plagued generalized
additive models that apply backfitting algorithms (14, 21, 22).
Although various spline regression models have been

applied to investigate covariates in time-to-health effects
or survival analyses (11-14, 23-35), we are unaware of
any such applications involving human metabolism orFigure 2. Scatter plots of levels of benzene metabolites versus

benzene exposure for 326 workers with the greatest air exposures to
benzene (circles). Expected mean trends (solid curves) and their 95%
confidence intervals (dashed curves) from natural spline models. MA,
E,E-muconic acid; PH, phenol; CA, catechol; HQ, hydroquinone.

Table 2. Effects of covariates on metabolite levels (after
adjustment for benzene exposure)

Metabolite Adjusted R2 Covariate Variable estimate* P

MA 0.814 Intercept 1.11 <0.0001
Age �0.019 0.001
Sex (male) �0.275 0.013
BMI 0.011 0.350
Smoking 0.111 0.335

SPMA 0.742 Intercept �6.19 <0.0001
Age �0.015 0.137
Sex (male) �0.447 0.035
BMI �0.017 0.466
Smoking 0.202 0.362

PH 0.605 Intercept 4.21 <0.0001
Age �0.011 0.024
Sex (male) �0.211 0.031
BMI �0.003 0.768
Smoking 0.042 0.680

CA 0.504 Intercept 2.65 <0.0001
Age �0.002 0.709
Sex (male) �0.256 0.008
BMI �0.021 0.049
Smoking 0.327 0.001

HQ 0.69 Intercept 1.95 <0.0001
Age �0.011 0.015
Sex (male) �0.209 0.026
BMI �0.014 0.190
Smoking 0.356 0.0003

NOTE: Age is centered around the mean of 30.2 years. For gender, female is the
reference. Body mass index is centered around the mean of 22.5 kg/m2. For
smoking, nonsmoker is the reference.
Abbreviations: MA, E,E -muconic acid; PH, phenol; CA, catechol; HQ,
hydroquinone; BMI, body mass index.
*Variables are based upon Model B where the natural log of a metabolite level
(Amol/L) is regressed upon on the corresponding natural log of the benzene air
concentration (ppm) plus significant knots and covariates.
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exposure-biomarker relationships. Because GLM + NS models
are flexible and robust, they offer great promise as tools for
investigating human metabolites and other biomarkers of
environmental toxicants.
We used GLM + NS models to test for effects upon

metabolite levels of several demographic factors (Table 2). Of
the covariates considered, only age and/or gender consistently
showed significant effects among the five metabolites, after
adjustment for benzene exposure. Male subjects had exposure-
adjusted metabolite levels that were about 20% lower than
those of females. For example, males had 100 
 (1 � e�0.209) =
18.9% less hydroquinone than females at a given exposure
level. Likewise, levels of four metabolites (E,E-muconic acid,
SPMA, phenol, and hydroquinone) diminished with age, at
rates between 1.1% and 1.9% per year of life (Table 2). This
range is the same as that reported for albumin adducts of
benzene oxide and 1,4-benzoquinone in a different sample of
Chinese workers exposed to benzene (36). Although we
expected that co-exposure to toluene (a competitive inhibitor
of benzene for CYP metabolism) would affect metabolite levels,
this was not the case, possibly due to the relatively low toluene
concentrations in our study (median, 3.29 ppm; 10th-90th
percentile range, 0.012-21.9 ppm; n = 326).

After adjusting for benzene exposure, smoking subjects had
about 40% higher levels of hydroquinone and catechol than
nonsmokers (Table 2). Because significant smoking effects
were not observed for E,E-muconic acid, SPMA, and phenol,
we attribute this result to the uptake of hydroquinone and
catechol per se from cigarette smoke (37-40). To quantify the
contributions of hydroquinone and catechol derived per
cigarette, we regressed the logged levels of hydroquinone
and catechol on self-reported smoking frequencies in 131
control subjects, who provided this information. This resulted
in the following relationships: ln(hydroquinone, Amol/L) =
1.79 + 0.021 (cigarettes per day; P < 0.01) and ln(catechol,
Amol/L) = 2.41 + 0.011 (cigarettes per day; P = 0.19). Based
upon these models, smoking 20 cigarettes would result in
52% more hydroquinone [i.e., 100 
 (1 � e (0.021 
 20))%] and
20% more catechol than observed in nonsmoking control
subjects.
Although background-adjusted levels of all metabolites

increased monotonically with benzene exposures up to about
30 ppm (Fig. 3A), the molar fractions for phenol, hydroqui-
none, and E,E-muconic acid changed continuously with
increasing air concentrations (Fig. 3B), whereas those for
catechol and SPMA remained relatively constant. This indi-
cates that the competing CYP-mediated pathways (Fig. 1)
were sensitive to the air levels of benzene inhaled by these
subjects. Below 20 ppm, molar fractions of hydroquinone
and E,E-muconic acid increased with exposure, whereas those
of phenol decreased with exposure; above 20 ppm, the
opposite behavior was observed. Because production of
hydroquinone and E,E-muconic acid was preferred to that
of phenol (below 20 ppm), we infer that phenol and oxepin
were either higher-affinity substrates than benzene for the
particular CYP enzymes or were more accessible to these
enzymes. This conjecture is supported by studies showing
that KMs for CYP-mediated metabolism of phenol and oxepin
were smaller than those of benzene in tissues from humans
and/or animals (41-44). Above 20 ppm, the second CYP
oxidation steps, leading to hydroquinone and E,E-muconic
acid, seem to have become increasingly saturated; this led
to the buildup of phenol and, to lesser extents, of catechol
and SPMA (other products of a single CYP-oxidation step;
ref. 45).
Using mean trends from the NS models (Fig. 4), we

investigated dose-specific levels (Amol/L/ppm) of the five
benzene metabolites and their sum (total metabolites). The
spaghetti plots were dense along the observed mean trends,
and interquartile ranges were relatively small. Wide 95%
confidence bands were observed below about 0.1 ppm, due to
the large relative errors from background subtraction in this
region, particularly for phenol, hydroquinone, and catechol,
which have important dietary and endogenous sources
(39, 46, 47). However, given the narrow interquartile ranges,
our conclusions regarding the mean trends should be
reasonable. Overall, expected median values of dose-specific
levels of total metabolites decreased about 9-fold between 0.03
and 88.9 ppm of benzene. For benzene exposures below 20
ppm, the decreasing trends were more pronounced for phenol
and catechol (7- to 11-fold) than for hydroquinone and E,E-
muconic acid (2- to 3-fold), reflecting the apparent preference
for metabolism of the latter metabolites at low exposures
(described above). At benzene exposures above 20 ppm, the
trends accelerate downwards for E,E-muconic acid and
hydroquinone and turn upwards for phenol and catechol,
consistent with results from previous investigations of workers
heavily exposed to benzene (16, 17, 48). The mean trend for the
minor product SPMA increased over the observed range of
exposures and, therefore, displayed completely different
behavior than those of the major metabolites.
Interestingly, about 90% of the reductions in dose-specific

metabolite levels occurred below about 3 ppm for each major

Figure 3. Dose-dependent production of benzene metabolites.
Expected mean trends from natural spline models applied to subjects
with benzene exposures between 0.03 and 88.9 ppm (n = 267). A.
Background-adjusted levels of benzene metabolites. B. Molar
fractions of benzene metabolites.
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product. This behavior was unexpected, given current tox-
icokinetic models that indicate that saturable benzene metab-
olism should not be observed below about 3 to 10 ppm in
humans (49, 50). Thus, our results suggest that current

toxicokinetic models for benzene are not accurate for air
concentrations below 3 ppm.
It is also important to point out that human health risks

associated with benzene exposure are based upon linear

Figure. 4. Dose-specific levels (Amol/L/ppm) of benzene metabolites, predicted by natural spline models, for benzene exposures between 0.03
and 88.9 ppm. Expected mean trends from the model (red curves). Corresponding 50th percentiles of the sampling distributions of expected
mean trends from 500 iterations of bootstrap resampling (yellow curves). The corresponding interquartile ranges (blue curves) and 95%
confidence intervals (brown curves) of expected mean trends from bootstrap resampling are shown along with the individual iteration
trajectories (gray curves).
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extrapolation from epidemiology studies involving workers
exposed, on average, to air concentrations of tens to hundreds
of ppm (3, 4). Our results indicate that persons exposed to air
concentrations <0.1 ppm metabolize benzene about nine times
more efficiently than such heavily exposed workers (see
Fig. 4F). Because the toxic effects of benzene are thought to
result from metabolism, this suggests that the health risks
associated with low and very low benzene exposures can be
considerably greater than those currently predicted from
occupational studies.
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