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Low-income communities and communities of color often suffer from multiple environmental hazards that
pose risks to their health. Here we extended a cumulative environmental hazard inequality index (CEHII) –
developed to assess inequalities in air pollution hazards – to compare the inequality among three urban
counties in California: Alameda, San Diego, and Los Angeles. We included a metric for heat stress to the anal-
ysis because exposure to excessively hot weather is increasingly recognized as a threat to human health and
well-being. We determined if inequalities from heat stress differed between the three regions and if this
added factor modified the metric for inequality from cumulative exposure to air pollution. This analysis indi-
cated that of the three air pollutants considered, diesel particulate matter had the greatest inequality, fol-
lowed by nitrogen dioxide (NO2) and fine particulate matter (PM2.5). As measured by our index, the
inequalities from cumulative exposure to air pollution were greater than those of single pollutants. Inequal-
ities were significantly different among single air pollutant hazards within each region and between regions;
however, inequalities from the cumulative burdens did not differ significantly between any two regions.
Modeled absolute and relative heat stress inequalities were small except for relative heat stress in San
Diego which had the second highest inequality. Our analysis, techniques, and results provide useful insights
for policy makers to assess inequalities between regions and address factors that contribute to overall envi-
ronmental inequality within each region.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Researchers and policy-makers have identified a higher frequency
and magnitude of exposures to environmental stressors in communi-
ties of color and low-income communities (Institute of Medicine
1999; Morello-Frosch and Shenassa 2006). Such inequalities in envi-
ronmental hazard exposures are increasingly recognized as potential
determinants of health disparities (Finkelstein et al., 2005; Morello-
Frosch and Jesdale, 2006; Morello-Frosch et al., 2011). Multiple envi-
ronmental hazards may act cumulatively or interact in complex ways
to magnify their risks to human health (National Research Council,
2009). For example, the synergy between ozone and other pollutants
in causing health effects has been recently suggested (Mauderly and
Samet, 2009). In previous work, we developed a cumulative environ-
mental hazard inequality index (CEHII) to assess inequalities by
racial-ethnic composition and by poverty status in exposure to multi-
ple air pollutants in Los Angeles County (Su et al., 2009c). In this
paper, we extend that method to compare inequalities in exposure
+1 510 642 5815.

rights reserved.
to single and multiple environmental hazards in Los Angeles County
with those in Alameda County and San Diego County. The environ-
mental hazards are traffic-related air pollution (nitrogen dioxide or
NO2), fine particulate matter PM2.5 (aerodynamic diameter less than
2.5 μm), and diesel particulate matter (diesel PM).

We broadened the method beyond air pollution by adding met-
rics for heat stress (both absolute and relative measures). Exposure
to excessively hot weather is increasingly recognized as a threat to
human health and well-being that will likely worsen with climate
change (Harlan et al., 2006; Patz et al., 2005). Heat-related deaths
are a chronic problem in arid climates (Center for Disease Control,
2005). Summer heat waves, sporadic periods of elevated tempera-
tures outside the normal range of climate variability, occur through-
out the world (Meehl and Tebaldi, 2004). They contribute to the
global burden of disease and premature deaths (Confalonieri et al.,
2007; Huynen et al., 2001; Medina-Ramon et al., 2006). More deaths
are attributed to heat in temperate climates than in warm climates,
probably because people in temperature zones are less acclimated
to high temperatures (Rey et al., 2007; Saanen et al., 2007). Some
research has found significant interactions between heat stress and
high concentrations of air pollutants such as ozone and NO2 (Basu,
2009; Theoharatos et al., 2010; Vaneckova et al., 2008). The highest
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morbidity and mortality associated with extreme heat appear to
occur in cities, falling disproportionately upon marginalized groups,
particularly the poor, minority populations, and the elderly (Center
for Disease Control, 2009). Therefore, these disadvantaged commu-
nities may experience disproportionate burdens from both ambient
air pollutant exposures and heat stress. In this paper, we applied
the CEHII method to quantitatively assess inequalities in exposure
to air pollution and heat stress in three urban counties.

2. Materials and methods

This section first describes the data sources used to develop met-
rics for air pollution and heat stress, and race-ethnicity or socioeco-
nomic status. We then explain the techniques used to calculate
inequalities in exposure to single and cumulative hazards.

2.1. Air pollution

We estimated NO2 using land use regression models (Su et al.,
2009a) to model spatial variation in traffic pollutants for the three
regions, using detailed pollution data available from earlier studies
(Ostro and Kim, 2008; Ross et al., 2006; Su et al., 2009b). Because
PM2.5, levels vary over large areas, and there were limited monitoring
sites available, we used geostatistical interpolation to estimate expo-
sure to PM2.5 based on a network of 23 continually operating moni-
tors (Krewski et al., 2009). Diesel PM concentrations at the census
tract level were estimated by the US Environmental Protection Agen-
cy for 1999 (See National-Scale Air Toxics Assessment: http://www.
epa.gov/ttn/atw/nata1999). Census tract level NO2 and PM2.5 mean
concentrations were extracted from the corresponding model sur-
faces. To exclude extreme outliers that existed in the data, any pollut-
ant within a census tract with a z-score greater than 5 was removed
from analysis.

2.2. Absolute and relative summer heat stress

Increased temperature and radiation directly raise body tempera-
ture, and increased humidity slows cooling of the body by decreasing
sweat evaporation (English et al., 2009). An increase in wind speed,
by contrast, increases sensible and latent heat loss (Dikmen and
Hansen, 2009). Therefore, high temperature, high humidity, and low
wind speed increase an individual's risk of heat illness (Maloney,
1998). For summer heat stress, we used Steadman's (1984) apparent
temperature, calculated by:

Tap ¼ −1:8þ 1:07 � Tamb þ 2:4 � P−0:92 � vþ 0:042 �Q

where Tap is the estimated apparent temperature and Tamb the mea-
sured ambient temperature, both in °C; P, v and Q are vapor pressure
(kPA), wind speed (m/s), and solar radiation (W/m2), respectively. In
estimating daily heat stress, the daily maximum ambient temperature
was used for Tamb, and daily average vapor pressure and wind speed
for P and v, respectively.

Meteorological data were acquired from the California Irrigation
Management Information System (CIMIS). Daily data in summer
months (July, August, and September) from 123 monitoring stations
for 2001–2005 were used to estimate summer heat stress. Literature
suggests that when the temperature is above 40 °C, people working
outside should take extreme caution (Harlan et al., 2006). The appar-
ent temperature exceeding 40 °Cwas treated as absolute exceedance
temperature (i.e., difference between apparent temperature and
40 °C). The total absolute extreme temperature exceedances
were summarized for each monitoring station for a summer season
and then divided by the number of days with temperature measured
above 40 °C in the same period to derive a per day absolute tempe-
rature exceedances for that summer season. This value was
estimated for each of the five years and then further averaged to re-
flect the five-year mean per day absolute temperature exceedances
(°C per day).

Distance to coast (km), latitude (degrees), and elevation (m) data
(Brody et al., 2008) were then used to model per day absolute tem-
perature exceedances for the state of California using data from the
123 monitoring stations. The modeling results were then used to pre-
dict absolute daily temperature exceedances for each census tract for
the counties of Alameda, Los Angeles, and San Diego.

An individual's response to heat is also conditioned by their local
climate. We thus calculated the total temperature exceedances for
each monitoring station based on its 1971–2000 historical normal
maximum temperature for a summer season (i.e., July, August, and
September). The total temperature exceedances were then divided
by the number of days with temperature above historical normal
maximum temperature in the same period to derive a per day rela-
tive temperature exceedances (°C per day) for that summer season.
The estimations were conducted for the 2001–2005 summer seasons
and daily relative temperature exceedances of a five-year meanwere
calculated and used for our analysis. Because of the lack of 30-year
CIMIS meteorological data to derive historical normal maximum
temperatures for each monitoring station, the historical normal
maximum temperature data for the CIMIS monitoring stations
were derived from the U.S. National Climate Data Center (NCDC)
for 1971–2000 based on the closest distance principle. The relative
daily temperature exeedances Ej for a summer season for at location
j were calculated as follows:

Ej ¼
1
n

Xn

i¼1

Tapij−T max
j

� �

where T max
j is the mean historical normal maximum temperature

from the months of July, August, and September at the jth location.
Tapij is the ith day apparent temperature in the three-month period
exceeding the mean historical normal maximum temperature at
the jth location, and n is the total number of days with apparent tem-
perature greater than the mean historical normal maximum temper-
ature. An inverse distance weighting function was used to assign the
relative daily temperature exceedances from the 123monitoring sta-
tions to the census tracts in the counties of Alameda, Los Angeles and
San Diego.

2.3. Neighborhood racial/ethnic composition and poverty rate

We selected two widely used neighborhood composition metrics.
The first metric, based on the 2000 US Census, was the census tract
racial-ethnic composition, defined as the percentage of non-Whites
in the population. The second metric was the proportion of the popu-
lation with an income less than 200% of the federal poverty level, be-
cause on average, families need an income equal to about two times
the federal poverty level to meet their most basic needs (Berstein et
al., 2000). To reduce the complexity of the paper, only inequalities
by racial-ethnic composition are described in the main text. Inequal-
ities across neighborhood poverty gradients were similar and are in-
cluded in Supplementary Figs. A1, A2 and A3.

2.4. Cumulative environmental hazard inequality index

To measure inequality related to racial-ethnic or socioeconomic
measures, we modified a “concentration index” developed for the
World Bank to estimate health inequalities across regions and groups
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Fig. 1. Positive and negative inequality curves. A positive curve indicates that census tracts with a higher percentage of White residents or lower poverty rates have lower shares of
environmental hazard. The negative curve indicates that census tracts with a lower percentage of White residents, or higher poverty rates, bear a higher proportion of the environ-
mental hazards. The equality line indicates that environmental hazards are distributed equally among various groups of race-ethnicity or among various levels of poverty status.

Table 1
Prediction of daily absolute temperature exceedances for the State of California using
123 meteorological monitoring stations.

Predictor Coefficients t Sig. Collinearity
statistics

B Std. error Tolerance VIFa

Constant 28.7784 3.5896 8.017 .000
Latitude (degrees) −.7323 .0994 −7.369 .000 .989 1.011
Elevation (m) −.0018 .0002 −8.693 .000 .863 1.159
Distance to coastal line
(km)

.0553 .0032 17.463 .000 .858 1.166

a VIF=variance inflation factor.
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in a population (O'Donnell et al., 2008) (Fig. 1). A summary measure
of inequality is defined as twice the area between an inequality curve
and the equality line:

I ¼ 1−2∫
n

1

e sð Þds

This measure gives a quantitative summary of inequality among
groups, in which 0 indicates that all groups, or in our case all census
tracts, have an equal share of environmental burden (i.e., no inequal-
ity), and 1 is the highest level of inequality, where one group or one
census tract bears whole detrimental burden.

Such an index only captures inequalities associated with single
factors. To measure the socioeconomic or racial-ethnic inequalities
from multiple burdens, we calculated the cumulative environmental
hazard inequality index (CEHII) (Su et al., 2009c). The index uses
the cumulative proportion of the population – ranked by area-based
racial-ethnic composition or socioeconomic strata, starting from the
most disadvantaged – against cumulative environmental hazard bur-
dens. We assumed the existence of fully multiplicative burdens (i.e.,
every pollutant was multiplicatively synergistic with every other pol-
lutants). This methodological approach integrates multiple burdens
and social data into a single index. Two inequality indices in exposure
to multiple environmental burdens were investigated: one with the
cumulative environmental burdens from three air pollutants NO2,
PM2.5, and diesel PM; and another with the cumulative environmen-
tal burdens from air pollutants and heat stress metrics.

3. Results

This section first describes summer heat stress predictions (i.e.,
the absolute and relative heat stresses based on daily temperature
exceedances) at the census tract level, followed by tract level descrip-
tive statistics of race-ethnicity and air pollution. The inequalities from
exposure to air pollution and heat stress in each of the three regions
are summarized. Within-county inequalities are compared between
NO2, PM2.5, diesel PM, and their cumulative environmental burdens,
followed by adding in heat stress. Finally, the inequalities in exposure
to single and cumulative burdens between the three counties are
compared for the three air pollutant hazards and heat stress. The “t”
statistical tests are used to assess the significance of differences in
all the inequality indices discussed.

3.1. Prediction of heat stress

With a multiple linear regression model we found that distance
to coast, elevation and latitude explained 74.6% (R2) of variance in
the absolute heat stress measure (based on temperature exceeding
40 °C) (Table 1). All three predictors had expected signs of
correlation, the tolerance rates for collinearity were all greater than
0.85, and the Variance Inflation Facts (VIF) were all less than 1.17.
Absolute heat stress was then predicted to the census tract level
using the model from Table 1. Based on Fig. 2a–c, the absolute heat
stress in the three counties generally increases when moving inland
from coastal areas.

The relative heat stress measures (based on temperature exceed-
ing local historical normalmaximum temperature) from theweather
monitoring stations were projected to the census tracts in the three
counties by an inverse distance weighting function. The relative
heat stress mapped in Fig. 3a–c demonstrates that these stresses
are usually higher in places closer to the coastal areas and in low el-
evation regions.

3.2. Descriptive statistics

For neighborhood racial-ethnic composition, the census tract
with the highest percentage of non-White population was in Los
Angeles County with 99.6% (Table 2). The census tract with the



Fig. 2. Predicted absolute heat stress for the counties of Alameda (a), San Diego (b) and Los Angeles (c).
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smallest non-White population had 0% non-Whites, also found in Los
Angeles. Both Los Angeles and Alameda counties had more than 50%
non-White populations (51.3% for Los Angeles and 51.5% for
Alameda), but Los Angeles had the highest regional variation with
a standard deviation of 28.7%. Los Angeles had the greatest maxi-
mum (47.8 ppb) andmean NO2 concentrations (22.3 ppb) compared
to Alameda County (maximum 21.78 ppb and mean 15.2 ppb) and
San Diego County (maximum 29.32 and mean 13.5 ppb). The stan-
dard deviation was the smallest in Alameda (3.1 ppb). Similar to
NO2, the mean modeled concentrations of PM2.5 and diesel PM
were highest in Los Angeles County. Compared to San Diego County,
Alameda County had lower mean modeled concentrations of PM2.5

and diesel PM.
Los Angeles County had the greatest maximum absolute tempera-

ture exceedances (7.44 °C per day) but San Diego County had the
greatest mean absolute temperature exceedances (5.18 °C per day).
San Diego County had the greatest minimum absolute temperature
exceedances (4.46 °C per day) but the smallest standard deviation
(0.38 °C per day) among the three counties. By contrast, Alameda
County had the lowest maximum (2.97 °C per day) and mean
(1.47 °C per day) absolute temperature exceedances, although the
standard deviation (0.42 °C per day) was higher compared to that of
San Diego.
For relative heat stress, San Diego County had the highest maxi-
mum (3.64 °C per day) relative temperature exceedances. Alameda
County, by contrast, had the greatest mean relative temperature
exceedances (1.57 °C per day). Los Angeles County had the lowest
mean relative temperature exceedances (1.14 °C per day) and its
maximum relative temperature exceedances (2.11 °C per day) was
between those of Alameda County and San Diego County. Overall,
the degree of relative heat stress was lower compared to that of abso-
lute heat stress.

3.3. Differences in inequality between NO2, PM2.5, diesel PM, heat stress,
and their cumulative burdens within counties

Inequality curves for each of the three air pollutant estimates, the
two heat stress indicators, and the cumulative burdens are displayed
in Fig. 4a–c. The corresponding inequalities in exposure to single and
cumulative environmental burdens, including the 95% confidence in-
tervals, are shown in Table 3. Within county difference results are
shown in Tables 4 and 5.

In Alameda county, among the three air pollutants, the greatest
inequality existed for diesel PM (concentration index, referred as
C=−0.128), followed by NO2 pollution (C=−0.045) and PM2.5

(C=0.003) (Fig. 4a and Table 3). Although different in size, all the

image of Fig.�2


Fig. 3. Predicted relative heat stress for the counties of Alameda (a), San Diego (b) and Los Angeles (c).
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single indices were significantly different from equality (Table 3).
The inequality in cumulative exposure to three air pollutants (cumu-
lative burdens A) was greater than for any single pollutant alone
(C=−0.179). The negative signs associated with the inequalities in-
dicated that neighborhoods with a higher proportion of non-Whites
encounter greater exposure to these environmental hazards. For
PM2.5, however, neighborhoods with a higher proportion of non-
Whites were exposed to lower modeled levels of air pollutants.
Table 2
Descriptive statistics for race-ethnicity and heat stress at census tract level within counties

Measures Alameda

Min Mean Max Std

% of population that is nonwhite 6.82 51.46 98.97 23.0
% of population that is Hispanic 0.36 17.88 81.39 14.1
% of population that is Black 0.00 16.95 84.26 20.3
% of population that is Asian 0.00 18.98 92.81 15.4
Traffic-related air pollution (NO2) (ppb) 6.21 15.23 21.78 3.1
Air pollution fine particulates (PM2.5) (μg m−3) 11.43 11.81 13.21 0.2
Air pollution diesel PM (μg m−3) 0.46 1.85 12.50 1.2
Absolute heat stress (°C per day)a 0.80 1.47 2.97 0.4
Relative heat stress (°C per day)b 1.09 1.57 2.01 0.2

a Refers to mean temperature exceedances for the days when apparent temperatures wer
periods.

b Refers to mean temperature exceedances for the days when apparent temperatures wer
used for calculating absolute heat stress.
Because the inequality from PM2.5 was relatively small and had an
opposite sign compared to inequalities from the other two air pollut-
ants, the inequality in cumulative exposure to the three environ-
mental hazards was only borderline significantly different from
that of diesel PM (t=1.845 and p=0.066). All other inequalities in
exposure to single pollutants were significantly different from one
another and from the inequality in exposure to the three pollutants
(Table 4).
.

San Diego Los Angeles

Min Mean Max Std Min Mean Max Std

7 1.95 33.82 91.78 20.46 0.00 67.37 99.96 28.70
9 0.00 26.38 96.11 21.57 0.00 43.37 99.61 29.52
2 0.00 5.36 60.76 7.02 0.00 9.48 96.18 15.80
2 0.00 8.67 72.90 10.16 0.00 11.93 82.29 14.09
0 5.68 13.52 29.32 4.26 1.50 22.29 47.82 5.06
5 11.89 14.00 16.06 0.85 6.58 20.26 24.26 2.68
0 0.44 2.74 39.02 5.59 0.65 2.91 26.34 2.26
2 4.46 5.18 6.52 0.38 3.44 4.83 7.44 0.61
8 0.09 1.47 3.64 0.75 0.33 1.14 2.11 0.33

e above 40 °C for the summer months (July, August and September) in the 2001–2005

e above the local historical normal maximum temperature for the same period as those

image of Fig.�3
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When heat stress was taken into account, we found (Fig. 4a and
Table 3) that heat stress from absolute temperature exceedances
had the second highest inequality (C=0.062), only lower than the
inequality from diesel PM; however, the heat stress from relative
temperature exceedances had the second lowest inequality (C=
−0.023), only slightly greater than inequality from PM2.5. Further-
more, the inequality from absolute heat stress took a positive sign,
indicating neighborhoods with a greater proportion of Whites expe-
rienced higher absolute temperature exceedances. By contrast, the
inequality from relative heat stress took a negative sign, indicating
that neighborhoods with a greater proportion of non-Whites experi-
enced higher relative temperature exceedances, although the level
of inequality was smaller than that of absolute temperature excee-
dances. Based on the 95% confidence intervals in Table 3, inequalities
from both absolute and relative heat stress were significantly differ-
ent (pb0.01) from the equality line. In addition, inequalities from
both absolute and relative heat stress were significantly different
compared to inequalities from other single and cumulative environ-
mental burdens (pb0.01) (Fig. 5). Because of the opposite direction
in inequality for the absolute and relative heat stresses, the inequal-
ities in exposure to the cumulative impacts from the three air pollut-
ants and the two heat stress indices were not significantly different
from those of the three pollutants (t=0.646 and p=0.519)
(Table 5). The relative greater degree of inequality from diesel PM
made it non-significant compared to that of the cumulative impacts
from the three air pollutants and the two heat stress indices
(t=1.107 and p=0.269). Heat stress and other single and cumula-
tive burdens were significant different from one another (Table 5).

In San Diego, among the three pollutants, the greatest inequality
was from diesel PM (C=−0.138), followed by NO2 (C=−0.057)
and PM2.5 (C=−0.004) (Fig. 4b and Table 3). The cumulative in-
equality in exposure to the three pollutants was greater than for
any single pollutants, and the inequality indices reflected that neigh-
borhoods with a higher proportion of non-Whites experienced
greater environmental hazard burdens. Comparing between the
three environmental hazards and the cumulative burdens, all the in-
equalities were significantly different from one another (pb0.05)
(Table 4). When heat stress was taken into consideration, we found
that the inequality from absolute heat stress was the smallest
(C=0.002) among all the indices considered (Table 3); however,
the inequality from relative heat stress was the second highest
(C=−0.116), only smaller than (but not statistically significantly
different from) that of diesel PM (t=1.249 and p=0.212)
(Table 5). The negative sign and the high degree of inequality from
relative heat stress indicated that neighborhoods with a higher pro-
portion of non-Whites experienced far greater relative temperature
exceedances. By contrast, the absolute heat stress is non-
significantly different from the equality line based on the 95% confi-
dence interval in Table 3 (−0.001, 0.006). The addition of heat stress
significantly increased the inequality from exposure to the three air
pollutants (inequality changed from −0.199 to −0.293).

In Los Angeles county, although inequality from diesel PM
(C=−0.081) was smaller than that of Alameda and San Diego
counties, among the three environmental hazards considered, diesel
PM exposure inequality was still the greatest in Los Angeles, followed
by NO2 (−0.068) and PM2.5 (−0.031) (Fig. 4c and Table 3). The in-
equality in exposure to the three environmental hazards combined
was greater than from any single factor. The inequalities had the fol-
lowing characteristics: (1) they were significantly different from
Fig. 4. Inequalities in exposure to NO2, PM2.5, diesel PM, absolute and relative heat
stresses, and the cumulative environmental burdens from exposure to the three air
pollutants (cumulative burdens A) and from exposure to both air pollution and heat
stress (cumulative burdens B) in the counties of Alameda (4a), San Diego (4b) and
Los Angeles (4c).

image of Fig.�4


Table 5
Identification of within-county differences in inequality from exposure to the two heat
stress indices, the three air pollutants and their cumulative impacts.

Region Inequality
indicators

Absolute heat
stress

Relative heat
stress

Cumulative Ba

(t) (p) (t) (p) (t) (p)

Alameda NO2 9.132 b0.001 2.701 0.007 4.916 b0.001
PM2.5 5.857 0.001 4.210 b0.001 7.232 b0.001
Diesel PM 9.753 b0.001 5.959 b0.001 1.107 0.269
Cumulative Aa 9.901 b0.001 6.819 b0.001 0.646 0.519
Absolute heat
stress

7.206 b0.001 9.021 b0.001

Table 3
Race-ethnicity inequalities in exposure to single and cumulative environmental hazards from air pollution and heat stress.

Inequality indicators Alameda San Diego Los Angeles

Ineq. index 95% CI Ineq. index 95% CI Ineq. index 95% CI

NO2 −0.045 (−0.057, −0.035) −0.057 (−0.070, −0.044) −0.068 (−0.072, −0.063)
PM2.5 0.003 (0.001, 0.004) −0.004 (−0.006, −0.0006) −0.031 (−0.034, −0.028)
Diesel PM −0.128 (−0.161, −0.095) −0.138 (−0.167, −0.110) −0.081 (−0.091, −0.072)
Cumulative burdens Aa −0.179 (−0.222, −0.136) −0.199 (−0.239, −0.159) −0.171 (−0.182, −0.159)
Absolute heat stress 0.062 (0.042, 0.082) 0.002 (−0.001, 0.006) −0.012 (−0.015, −0.009)
Relative heat stress −0.023 (−0.034, −0.011) −0.116 (−0.136, −0.097) 0.016 (0.009, 0.024)
Cumulative burdens Ba −0.159 (−0.202, −0.115) −0.293 (−0.337, −0.249) −0.171 (−0.183, −0.159)

a Cumulative burdens A refers to the inequality of cumulative burdens from NO2, PM2.5 and diesel PM. Cumulative burdens B refers to the inequality of cumulative burdens from
NO2, PM2.5, diesel PM, absolute and relative heat stresses.
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equality; (2) they demonstrated that neighborhoods with higher
proportions of non-Whites experienced greater environmental haz-
ard burdens; and (3) they were significantly different from one an-
other (Table 4). When heat stress was considered, it showed that
inequalities from the absolute and relative heat stresses were in
close range except for the direction of influence (−0.012 vs.
0.016). The effect of having opposite signs on the inequality index
meant that the two heat stress indices canceled each other out in
the cumulative inequality from heat stress. The combined heat stress
thus did not contribute significantly to the overall inequality for the
county: the difference between the cumulative burden inequalities
with and without the addition of heat stress had a t value of 0.012
and a p value of 0.991 (Table 5).

3.4. Differences in inequality from exposure to air pollution, heat stress,
and their cumulative burdens between counties

The degree of inequality in air pollution hazard decreased from
diesel PM to NO2 and to PM2.5 for all the three counties (Fig. 3 and
Table 3). Significant differences in inequality existed, however, be-
tween the three counties for PM2.5 exposure (pb0.05, see Table 6).
For NO2, a significant difference was seen between Alameda and Los
Angeles counties (p=0.001) and a marginally non-significant differ-
ence between San Diego and Los Angeles counties (p=0.083). By
contrast, Alameda and San Diego counties were not significantly dif-
ferent in inequality from NO2 exposure (p=0.236). For diesel PM,
significant differences in inequality were seen between Alameda and
Los Angeles counties (pb0.001) and between San Diego and Los
Angeles counties (pb0.001), but not between Alameda and San
Diego counties (p=0.653). All inequalities from cumulative burden
in the three counties were greater than the corresponding single
factor inequalities; however, no statistically significant difference
existed for the inequalities from cumulative burdens between any
two counties.
Table 4
Within-county differences in inequality from exposure to NO2, PM2.5, diesel PM and the
cumulative impacts using t tests.

County Inequality
indicators

PM2.5 Diesel PM Cumulative Aa

(t) (p) (t) (p) (t) (p)

Alameda NO2 8.010 b0.001 4.675 b0.001 5.830 b0.001
PM2.5 7.835 b0.001 8.194 b0.001
Diesel PM 1.845 0.066

San Diego NO2 7.845 b0.001 5.027 b0.001 6.596 b0.001
PM2.5 9.173 b0.001 9.544 b0.001
Diesel PM 2.418 0.016

Los Angeles NO2 12.569 b0.001 2.520 0.012 16.351 b0.001
PM2.5 9.821 b0.001 23.399 b0.001
Diesel PM 11.771 b0.001

a Cumulative A refers to the inequality of cumulative burdens from NO2, PM2.5 and
diesel PM.
For absolute and relative heat stresses, the directions of inequal-
ity were always opposite for a given county. In Alameda, the degree
of inequality from the absolute heat stress was about three times
that of its relative heat stress. In Los Angeles, the inequality from
absolute heat stress was very close in value to that of relative heat
stress except for the direction of influence. In San Diego, relative
heat stress created the highest degree of inequality for all the heat
stress indices in the three counties (C=−0.116). The inequality
from absolute heat stress in San Diego, by contrast, is not significant-
ly different from that of the equality line. The small levels of inequal-
ity from heat stress in Alameda and Los Angeles counties meant that
the addition of heat stress did not change the cumulative relation-
ship these two counties had for the air pollution burdens. We calcu-
lated a t value of 0.482 and a p value of 0.630 for the air pollution
burden inequalities between Alameda and Los Angeles; correspond-
ing values became 0.681 and 0.496 when heat stress indices were
added (Table 6). Because of the high impact from relative heat stress
in San Diego County, the addition of heat stressmade the inequalities
in cumulative burdens significant between Alameda and San Diego
counties (t=3.866 and pb0.001) and between San Diego and Los
Angeles counties (t=7.334 and pb0.001) (Table 6).
Relative heat
stress

5.899 b0.001

San Diego NO2 8.572 b0.001 4.919 b0.001 10.096 b0.001
PM2.5 2.434 0.015 11.200 b0.001 12.913 b0.001
Diesel PM 9.535 b0.001 1.249 0.212 5.784 0.001
Cumulative Aa 9.808 b0.001 3.644 b0.001 3.095 0.002
Absolute heat
stress

11.699 b0.001 13.151 b0.001

Relative heat
stress

7.216 b0.001

Los Angeles NO2 18.795 b0.001 17.881 b0.001 15.481 b0.001
PM2.5 9.237 b0.001 11.324 b0.001 22.008 b0.001
Diesel PM 13.527 b0.001 15.503 b0.001 11.332 b0.001
Cumulative Aa 26.496 b0.001 26.670 b0.001 0.012 0.991
Absolute heat
stress

6.566 b0.001 24.939 b0.001

Relative
heat stress

25.496 b0.001

a Cumulative A refers to the inequality of cumulative burdens from NO2, PM2.5 and
diesel PM. Cumulative B refers to the inequality of cumulative burdens from NO2,
PM2.5, diesel PM, absolute and relative heat stresses.



Table 6
Differences in inequalities in exposure to single and cumulative environmental hazards
between Alameda, San Diego and Los Angeles counties using t tests.

Inequality indicators Alameda vs
San Diego

Alameda vs
Los Angeles

San Diego vs
Los Angeles

(t) (p) (t) (p) (t) (p)

NO2 1.186 0.236 3.287 0.001 1.736 0.083
PM2.5 2.959 0.003 9.487 b0.001 10.146 b0.001
Diesel PM 0.450 0.653 3.320 b0.001 4.734 b0.001
Cumulative burdens Aa 0.627 0.531 0.482 0.630 1.845 0.065
Absolute heat stress 7.641 b0.001 13.039 b0.001 4.467 b0.001
Relative heat stress 6.580 b0.001 3.809 b0.001 14.599 b0.001
Cumulative burdens Ba 3.886 b0.001 0.681 0.496 7.334 b0.001

a Cumulative burdens A refers to the cumulative burdens from NO2, PM2.5 and diesel
PM. Cumulative burdens B refers to the cumulative burdens from NO2, PM2.5, diesel PM,
absolute and relative heat stresses.
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4. Discussion and conclusion

In this study, inequalities by racial-ethnic composition from expo-
sure to NO2, PM2.5, diesel PM and their cumulative impacts were com-
pared both within and between counties. Additionally, burdens from
absolute and relative heat stresses were added to these models. We
treated absolute heat stress as experiencing extreme temperatures
above 40 °C and relative heat stress as having extreme temperatures
above local historical normal maximum temperatures.

Overall, our research corroborates other studies showing that
communities of color bear greater environmental pollutants than pre-
dominantly White and more affluent communities (Marshall, 2008;
Su et al., 2009c). Absolute heat stress, expressed in the mean per
day temperature exceedances in excess of 40 °C, by contrast, followed
the opposite direction in Alameda County: communities of color ex-
perienced less absolute extreme temperature exceedances. This
might reflect that the White population in Alameda County mainly
lived in the eastern suburbs further from the coast, leading to higher
temperatures. San Diego County, however, did not have significant in-
equality based on absolute heat stress. In Los Angeles, although abso-
lute heat stress was relatively small in scale, communities with higher
proportions of non-White residents experienced greater levels of this
type of heat stress. This is probably because those disadvantaged
groups tend to reside further inland, especially in East Los Angeles.

Relative heat stress inequalities were among the smallest in the
indices considered in this study for both Alameda and Los Angeles
counties, indicating that relative heat stress alone might not be the
only significant factor resulting in adverse environmental burdens
for these two counties. Absolute heat stress in Los Angeles County is
also a relatively small factor. In San Diego, however, we saw that
neighborhoods with greater percentage of non-Whites experienced
far greater inequality in relative temperature exceedances.

Inequalities from absolute heat stress always took an opposite sign
compared to those of relative heat stress for a given county. These
canceling effects in heat stress inequality, however, were not the
same in the three counties. In San Diego County, the relative
heat stress inequality was the highest, and absolute heat stress did
not contribute significantly to the overall heat stress inequality.
In Los Angeles County, the two heat stress indices canceled each
other out. The canceling effect in Alameda County was between
San Diego County (no cancelation) and Los Angeles County (almost
total cancelation), due to the relatively greater absolute heat stress
inequality (compared to its relative heat stress inequality).

In modeling heat stress, we used the meteorological data from
monitoring stations. Generally weather stations are installed high
enough to avoid wind obstruction and reduce impact from ground
features. Our modeling process therefore did not take into consider-
ation any ground features that might mitigate heat stress such as
the presence of vegetation. Urban vegetation may provide shade,
moderate temperature and help reduce heat-related illness for city
dwellers (Blum et al., 1998; Cummins and Jackson, 2001; Nowak
and Dwyer, 1997; Nowak et al., 1998). Land surface temperature is
a measurement of how hot the land is to the touch. It differs from
air temperature because land heats and cools more quickly than
air. Land surface temperature should be more accurate in measuring
actual heat stress felt by people on the ground. Future attempts to
quantify heat stress will incorporate surface temperature derived
from remote sensing data to detect small area variation of tempera-
ture. Heat stress is also related to housing characteristics and air con-
ditioning (Kovats and Hajat, 2008). Air conditioning was found to be
an important protective factor for heat relatedmortality (Semenza et
al., 1996). Subsequent studies should also take these household vari-
ables into account given the availability of such data.

For the air pollutants NO2, PM2.5, and diesel PM, the inequalities
within a county were significantly different in all three regions. The
inequalities in cumulative environmental burdens with and without
the impact of heat stress were also significantly different from those
of single burdens, meaning there are corresponding significant diffe-
rences in spatial distribution. Because of the relatively small effect
from heat stress, the difference in cumulative inequalities with and
without the burden from heat stress was not significant, meaning the
addition of heat stress did not substantially influence the spatial pattern
of the inequality. In this way, the inequality indices could be used to
identify if significant spatial difference or correlation exists when com-
bining multiple environmental burdens into one single index.

When we calculated the series of inequality indices using poverty
status instead of racial-ethnic status, the results were similar
(see Supplementary materials). This is not surprising because at
the census tract scale, poverty and non-white were highly correlated
(r=0.69 in Alameda County and 0.77 in Los Angeles County). In San
Diego County, by contrast, the inequality in exposure to relative heat
stress was −0.044, much smaller than that of racial-ethnic gradient
(C=−0.12). This demonstrates that though low income communi-
ties experienced greater exposure to relative heat stress, it was the
communities of color had the greatest unfair exposure to this heat
stress in San Diego County.

The single and cumulative environmental hazard inequality indi-
ces represent the relative degree of inequality in a region. Higher
spatial variation of a pollutant would normally result in a greater in-
equality index, while the homogeneity of an environmental hazard
in spatial distribution would create an index not significantly differ-
ent from equality. If levels of environmental hazards in a region are
largely above the National Ambient Air Quality Standard or above a
known benchmark, normalization by benchmark standard or other
techniques should be used to identify those hot spots. Special atten-
tion should also be paid to areas with very few environmental haz-
ards as well as areas that lack a particular environmental hazard
while other environmental hazard levels are high. The synergistic
approach applied in our paper may inadvertently indicate that the
cumulative impacts in such an area are lower, which in fact may
not be the case.

In our analysis, any pollutant within a census tract with a z-score
greater than 5 was removed. We also tested scenarios where no out-
liers were removed, and we did not see any large changes in inequal-
ity indices, but the curves were less smooth. For example, in San
Diego, when all the census tracts were included we identified that
the 10% of census tracts with the highest proportion of Whites had
greater levels of estimated exposure to diesel PM (the curve lies
under the equality line). After further investigation, we found that
those communities were living on Coronado Island. Because of their
proximity to the San Diego ports, Naval Complex, and San Diego
International Airport, these communities had higher diesel PM expo-
sure. This inequality, although, did not change the overall pattern that
neighborhoods of predominantly non-Whites had higher inequality
in environmental burdens.
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Our research did not further classifyminority population into African
American, Hispanic, Asian, and other race-ethnicity groups. These indi-
vidual groups might have different degrees of inequality compared to
the overall non-White group; however, the techniques used here pro-
vide a way to assess race-ethnicity and poverty inequalities and assist
decision makers in prioritizing efforts to address inequality issues.

Traditionally, epidemiological and environmental studies have fo-
cused on single environmental indices to examine themarginal associa-
tions between single burdens and health outcome. In reality, these
burdens coexist and theymight interact to synergistically worsen health
status. Evidence for multiplicative burdens (Environmental Protection
Agency, 2006; Mauderly and Samet, 2009) makes assessing single envi-
ronmental or social factors problematic. Similarly, inequalities in expo-
sure to multiple significant environmental hazards should also be
applied to identify the cumulative burden inequality a region might ex-
perience. In Alameda County, census tracts with a high proportion of
White residents experiencing greater heat stress than predominantly
non-White census tracts, but when influences from multiple burdens
were taken into consideration, it was the neighborhoods of non-Whites
that had greater cumulative environmental burdens. Our research
shows that inequalities frommultiple environmental hazards were gen-
erally significantly different and greater than single hazard inequalities.
This also demonstrates the importance of taking into account the cumu-
lative burdens in assessing inequalities of a region for policy making.

Overall, our index allows for analysis of the environmental in-
equality frommultiple hazard exposures. Although scientific evidence
on the functional form of cumulative effects remains formative, the
framework provides a screening assessment that incorporates cumu-
lative burdens and social data into one indicator. Focusing on cumula-
tive burdens may lead to policies that directly target communities of
concern and consequently lead to improvements in public health.

Figures A1, A2 and A3 demonstrate the inequalities in exposure to
the three environmental hazards (NO2, PM2.5 and diesel PM), the two
heat stress measures and their cumulative impacts based on poverty
gradient. Supplementary materials related to this article can be
found online at: doi:10.1016/j.envint.2011.11.003.
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