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Benzene is a ubiquitous air pollutant that causes human leukemia 
and hematotoxic effects. Although the mechanism by which ben-
zene causes toxicity is unclear, metabolism is required. A series of 
articles by Kim et al. used air and biomonitoring data from work-
ers in Tianjin, China, to investigate the dose-specific metabolism 
(DSM) of benzene over a wide range of air concentrations (0.03–
88.9 p.p.m.). Kim et al. concluded that DSM of benzene is greatest 
at air concentrations <1 p.p.m. This provocative finding motivated 
the American Petroleum Institute to fund a study by Price et al. 
to reanalyze the original data. Although their formal ‘reanalysis’ 
reproduced Kim’s finding of enhanced DSM at sub-p.p.m. ben-
zene concentrations, Price et al. argued that Kim’s methods were 
inappropriate for assigning benzene exposures to low exposed 
subjects (based on measurements of urinary benzene) and for 
adjusting background levels of metabolites (based on median val-
ues from the 60 lowest exposed subjects). Price et  al. then per-
formed uncertainty analyses under alternative approaches, which 
led them to conclude that ‘… the Tianjin data appear to be too 
uncertain to support any conclusions …’ regarding the DSM of 
benzene. They also argued that the apparent low-dose metabolism 
of benzene could be explained by ‘lung clearance.’ In address-
ing these criticisms, we show that the methods and arguments 
presented by Price et al. are scientifically unsound and that their 
results are unreliable.

Human metabolism of benzene

Benzene is an important industrial chemical that is also present in 
petroleum products and combustion effluents. Given its great volatil-
ity, this constellation of emission sources has made benzene a truly 
ubiquitous air contaminant (1). Although occupational exposures to 
high doses of benzene cause acute myeloid and acute non-lymphocytic 
leukemias (1), evidence of hematotoxic effects (2) and lymphohemat-
opoietic cancers (3) in workers exposed to benzene <1 p.p.m. raises 
concerns about exposures to low concentrations as well. Urban popula-
tions throughout the world and cigarette smokers are routinely exposed 
to air concentrations of benzene in the range of 1–20 p.p.b. (4).

Although the mechanism by which benzene causes toxicity is not 
completely understood, metabolism appears to be required (5–7). 
Benzene is metabolized to a myriad of reactive species (benzene oxide, 
the benzoquinones, the muconaldehydes and benzene diolepoxide) (8) 
and more stable molecules that are excreted in urine (mainly phenol, 

hydroquinone, catechol and muconic acid with small amounts of 
benzenetriol and S-phenylmercapturic acid) (9). Significant concen-
trations of the phenolic compounds (phenol, catechol and hydroquin-
one) are observed in human urine even in the absence of prominent 
exposures to benzene and point to background sources, including diet, 
cigarette smoking and the microbiome (10–13).

Much of our current knowledge about human benzene metabol-
ism has been gleaned from biomonitoring studies of Chinese workers 
(9,14–20). Given their importance in elucidating low-dose metabol-
ism of benzene in humans, the publications by Kim et  al. (18–20) 
deserve special attention. These articles described 620 paired air and 
urine measurements (unmetabolized benzene, phenol, hydroquinone, 
catechol, muconic acid and S-phenylmercapturic acid) from the lar-
gest of the Chinese studies, which included 389 workers in Tianjin, 
China (250 from factories using benzene and 139 from factories not 
using benzene). Since workers from benzene-using factories dis-
played hematotoxicity at air concentrations <1 p.p.m. (2), low-dose 
benzene metabolism was of particular interest. Because the personal 
air monitors used to measure airborne benzene could not detect air 
concentrations below about 0.2 p.p.m., Kim et al. (18) used a calibra-
tion model to predict air concentrations for the low-exposed subjects 
based on measurements of urinary benzene. Then, to adjust for back-
ground levels of each metabolite, Kim et al. (18,19) subtracted median 
metabolite concentrations observed in the 60 lowest-exposed subjects 
(range: <1–3 p.p.b.). Kim et al. (18,19) investigated the dose-specific 
metabolism (DSM) of benzene by dividing the background-adjusted 
concentration of each metabolite and their sum (‘total metabolites’) 
by the corresponding air concentration (µM per p.p.m. benzene).

Kim et al. initially aggregated subjects by exposure level (30 per 
group) to investigate the empirical relationship between DSM and 
benzene concentrations (18). As shown in Figure 1, DSM declined 
14-fold as median benzene exposures increased from 0.027  p.p.m. 
to 15.4 p.p.m., with most of the reduction occurring <1 p.p.m. (18). 
The error bars shown in Figure 1 represent 5th and 95th percentiles 
of bootstrap distributions that account for sampling uncertainties and 
use of the calibration model to estimate low exposures. The scale of 
uncertainties relative to the overall change in DSM indicates that the 
mean trend of decreasing DSM with increasing benzene exposure was 
unlikely to be the result of chance.

Having used this combination of robust statistics to establish the 
empirical DSM relationship for benzene metabolites, Kim et al. then 
used natural spline (NS) and linear models to investigate metabolite 
levels as functions of benzene exposure plus covariates, including 
age, gender, body mass index (BMI), smoking and single-nucleotide 
polymorphisms of important metabolism genes (19,20). As shown 
by the dashed line in Figure  1, NS models smoothed and extended 
the empirical relationships with an overall 9-fold reduction in DSM 
between 0.03 and 88.9 p.p.m. The open circles and error bars represent 
50th, 10th and 90th percentiles of bootstrap distributions that account 
for sampling uncertainties and NS modeling. Follow-up analyses of 
covariates showed that benzene metabolism was greater in females, 
declined with age (19) and was influenced by polymorphic metabolism 
genes (CYP2E1, NQO1, EPHX1, GSTM1 and GSTT1) (20).

Additional evidence of enhanced benzene metabolism <1 p.p.m.

The results from Kim et  al. indicate that DSM of benzene was 
greatest at the lowest investigated air concentration of 0.03 p.p.m. 
and declined with increasing air concentrations up to 90  p.p.m. 
These findings are bolstered by measurements of protein adducts of 
reactive benzene metabolites in Chinese workers that also pointed 
to DSM reductions at or <1 p.p.m. (21–26). Interestingly, toxicoki-
netic models of benzene metabolism indicated that DSM should 

Abbreviations:  BMI, body mass index; DSM, dose-specific metabolism; 
GM, geometric mean; NS, natural spline; p.p.b., parts per billion; p.p.m., parts 
per million, TMP, total metabolite production.
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not diminish until air concentrations reached 10–100 p.p.m., when 
liver concentrations of benzene would begin to saturate metabol-
ism by CYP2E1 (27–30). However, these models were based on 
experimental human and animal exposures to benzene >1 p.p.m. (or 
equivalent). In fact, the only experimental investigation of human 
metabolism <1  p.p.m. was conducted by Weisel et  al. (31) who 
reported that four subjects inhaling 40 p.p.b. of 13C-benzene for 2 h 
metabolized benzene more rapidly than had been observed in work-
ers exposed to p.p.m. levels.

Rappaport et al. (32,33) fit Michaelis–Menten-like models, repre-
senting one and two saturable pathways, to benzene metabolite data 
combined from the Tianjin study and an earlier investigation of 44 
Shanghai workers (median air concentration  =  31  p.p.m.) (9). The 
weight of statistical evidence strongly favored two pathways rather 
than one pathway for metabolism of benzene to phenol and muconic 
acid (33) as well as total metabolites (32). This model predicted that 
almost three-fourths of benzene metabolism <0.1 p.p.m. resulted from 
the putative high-affinity (low-dose) pathway (33) and was supported 
by calculations based on independent data.

Criticism of Kim et al.

The conclusion of Kim et  al. (18,19) that benzene metabolism is 
enhanced at sub-p.p.m. concentrations motivated the American 
Petroleum Institute (API) to fund a project by Price et al.(34), which 
reanalyzed the Tianjin data. After obtaining the air and metabolite 
data under the Freedom of Information Act, Price et al. (34) focused 
on the NS modeling results of Kim et al. (19) and the corresponding 
DSM calculations. Surprisingly, Price et al. ignored the robust empiri-
cal analyses from Kim et al.’s earlier Carcinogenesis article (18) that 
displayed the same overall DSM behavior (Figure 1), and did not dis-
cuss corroborating evidence, cited above, favoring enhanced benzene 
metabolism at or <1 p.p.m.

After reproducing the published results of Kim et al., Price et al. 
discounted the finding of enhanced DSM for benzene <1 p.p.m. for 
the following reasons:

1.	Kim et al. should have used subjects’ mean values for statistical 
analyses rather than estimated geometric mean (GM) and median 
values.

2.	Kim et al. should not have used a calibration model to predict ben-
zene air concentrations for low exposed subjects because most of 
these workers were in factories where benzene was not used.

3.	Alternative samples of subjects should have been considered for 
adjusting metabolite concentrations for background values.

4.	Kim et  al.’s uncertainty analyses did not include random errors 
from the calibration model.

5.	Kim et al.’s conclusion that benzene is metabolized more efficient-
ly <1 p.p.m. is inconsistent with knowledge about ‘lung clearance.’

Price et  al. then performed their own uncertainty analyses with NS 
models of the Tianjin data and concluded that the ‘… data appear to be 
too uncertain to support any conclusions of a change in the efficiency 
of benzene metabolism with variations in exposure’ (abstract, last line).

Response to Price et al.

We will address each of the above criticisms of Price et al. considering 
the original work of Kim et al., NS modeling results reported by Price 
et al., follow-up uncertainty analyses with the NS models presented 
in our Supplementary Material (Sections 1 and 2), available at 
Carcinogenesis Online and a review of independent data regarding 
the ‘lung clearance’ of benzene (Supplementary Material, Section 3, 
available at Carcinogenesis Online). We will show that the methods 
and arguments presented by Price et al. are scientifically unsound and 
that their results are unreliable.

1. Use of mean values rather than geometric mean or median values. 
Because the 389 Tianjin subjects had up to fourpaired air and urine 
measurements (median of two per person), Kim et al. used estimated 
subject-specific GM values of air and metabolite concentrations for 
their analyses. They used median values from the 60 lowest-exposed 
subjects to estimate background concentrations of urinary metabolites 
and used median air and metabolite concentrations of groups of 30 
subjects (aggregated by benzene exposure) in their empirical analyses 
(18). In fact, one can use any measure of location (e.g., mean, GM or 
median) to investigate paired phenomena such as air and metabolite 
levels and to adjust for background levels. However, when the range 
of observation is extremely large, as with the Tianjin dataset where 
subjects’ GM air concentrations covered four orders of magnitude, it 
is common to explore relationships in the logarithmic scale (or sim-
ply the ‘log scale’) and to assume that the variates in question are 
log-normally distributed (35,36). Because the antilog of the mean of 
a set of logged observations is the sample GM (an estimator of the 
population median for a lognormal distribution), it is convenient to 
employ GM or median values of variates when performing log-scale 
analyses. This strategy has been widely used in science, engineering 

Fig. 1.  Dose-specific metabolism of benzene as indicated by measurements of benzene metabolites in urine from Tianjin subjects after background adjustment. 
Closed circles show data aggregated by estimated benzene exposures (30 subjects per group) with error bars representing 5th and 95th percentiles of bootstrap 
distributions (18). The dashed curve represents the natural spline model of individual subjects’ (geometric mean) benzene exposures between 0.03 and 
88.9 p.p.m. (19). Open circles and error bars are 50th, 10th and 90th percentiles of bootstrap distributions (Supplementary Material, Table S.1, available at 
Carcinogenesis Online).
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and economics (36) as well as for characterizing databases of air and 
biological measurements (37,38) and for investigating the population 
toxicokinetics of benzene (28).

Price et  al. contend that natural-scale mean (hereafter, simply 
‘mean’) values rather than GM values should have been used to inves-
tigate exposure–metabolite relationships. However, they offer neither 
a scientific rationale nor any supporting references for the conjecture 
that mean rather than median values ‘must’ be used to adjust metabolite 
concentrations for background values, particularly in light of non-lin-
ear relationships between benzene exposures and metabolite levels. In 
fact, both median (and GM) or mean concentrations can be interpreted 
meaningfully in the natural scale for investigations of exposure–metab-
olite relationships. Recognizing that subjects are exposed to varying air 
concentrations of benzene from day to day (about 15-fold for Chinese 
benzene exposures) (22), median (and GM) air and metabolite values 
reflect ‘typical’ concentrations and days, whereas the mean values 
reflect ‘average’ concentrations over all days. Likewise, using metab-
olite levels of very low exposed subjects for background adjustment 
can employ either medians to represent typical background levels or 
means to represent average background levels. Thus, one could choose 
to model log-scale relationships between exposure and metabolite lev-
els in terms of the logged median, GM or mean values. However, the 
combination of great within-subject variability of air concentrations on 
different days plus rapid metabolism (hours) complicates use of mean 
estimates for investigating the DSM of benzene (26,39).

A more serious issue concerns the lack of detail provided by Price 
et al. regarding their modeling of relationships between mean benzene 
exposures and mean metabolite levels. Price et al. indicate that they 
used the ‘arithmetic mean’ values for subjects with repeated meas-
urements (p.  2096, under ‘Modifications to data set’). We assume 
by this that they used the first moments of the natural scale observa-
tions of air and urinary analytes for obtaining subject-specific data. 
Apparently, Price et al. logged these estimated means and used the 
logged values to construct NS models of metabolite levels as func-
tions of the air concentrations of benzene. However, they provide no 
information about the NS modeling other than to say (p. 2096, last 
sentence) that NS models were revised to include a ‘bias correction 
factor’, based loosely on Miller (40) that is embodied in Equation 
(7). [Note that Equation (7) contains an error and should be given as 

Urinary metabolite concentration Air benzene M=( )[ ]e ef (ln( ) ( SSE / ) ]2( ) .

Because Price et al. did not report either their final NS models or even 
the numbers and values of knots (representing logged air concentra-
tions) that they used, we could not replicate their results. In Appendix B 
of their Supplementary Material, which describes replication of Kim’s 
NS models (but not new models of mean values), Price et al. contend 
(on pp. 3–4) that they ‘… were not able to independently determine 
the value of knots …’ and therefore used the knot locations from Kim 
et al. This is curious because Kim et al. (19) (at the bottom of p. 2247 
of their article) stated that six knots were ‘… assigned using equally 
spaced quantiles of the observations …’ (as is common practice) and 
referred to Harrell’s book for details (41). But in any case, use of Kim’s 
knots would have been inappropriate under Price’s Approaches B and 
C (described later) because sample sizes and ranges of observations 
differed markedly from those of the original models. The absence of 
basic details regarding Price et  al.’s NS modeling, under alternative 
approaches for background adjustment, renders unreliable all their 
results save those used to replicate results by Kim et al. (19).

2. Appropriateness of the calibration model. The calibration model 
used by Kim et al. (18) to predict low benzene exposures from meas-
urements of unmetabolized benzene in urine was motivated by Italian 
investigators who reported highly correlated benzene levels in air and 
urine in the p.p.b. to low p.p.m. range (42–45). Indeed, Kim et  al. 
(18) showed that the distribution of measured air concentrations in the 
Tianjin study [0.2–88.9 p.p.m. (n = 228)] overlapped closely with data 
reported by Ghittori et al. (42) for benzene exposures of non-smokers 
[0.01–3.7 p.p.m. (n = 63)].

Of the 389 Tianjin subjects, 161 (41%) had air exposures pre-
dicted from urinary benzene measurements, i.e. 22 from factories 

with benzene and 139 from factories without benzene. Price et  al. 
(p. 2095, right column, par. 1)  contend that it was inappropriate to 
predict exposures of workers in factories without benzene because 
their urine measurements

would be driven by non-occupational sources such as smoking, 
refueling vehicles, time spent in traffic, and dietary sources of 
benzene ... Because of the differences in the sources and tim-
ing of benzene exposures as compared to the occupationally-
exposed workers, the relationship between the non-occupation-
ally-exposed workers’ benzene exposures and the levels in their 
spot urine samples cannot be assumed to follow the relationship 
that occurs in the occupationally-exposed subjects.

By erecting an artificial barrier between subjects in factories who 
used and did not use benzene, Price et al. ignore the fact that all Tianjin 
subjects were exposed to benzene from petroleum and combustion 
processes (vehicle exhausts, smoking, etc.), including the 22 benzene 
factory workers whose air levels were predicted from the calibration 
model. One cannot exclude such benzene sources by simply claiming 
that the subjects are ‘non-occupationally exposed.’ Furthermore, Kim 
et al. reported that the predicted low benzene concentrations were very 
reasonable when compared with independent measurements of ben-
zene exposures in urban environments and among smokers (18). And 
finally, the timing of urine specimens within a workday was the same 
for all workers in the Tianjin study, regardless of whether the particular 
factory used benzene, and thus should not have biased results.

Given extensive validation of urinary benzene as a biomarker of 
short-term exposure, Price’s criticism of the calibration model is 
poorly justified and, as we will show, uncertainties introduced by the 
calibration model were trivial. Because the scientific goal is to inves-
tigate DSM over the full range of benzene exposures, including those 
derived from ambient sources and smoking, it would be unscientific 
to ignore quantitative estimates of exposure across 41% of study sub-
jects. Indeed, by classifying subjects with relatively high levels of uri-
nary benzene as part of the background sample, Price et al. introduce 
substantial misclassification error into the analyses (discussed under 
Approach B).

3. Alternative approaches for adjusting background levels of 
metabolites. Because chemicals produced by benzene metabolism 
also arise from dietary and endogenous sources, Kim et al. adjusted 
subject-specific metabolite levels by subtracting median metabolite 
concentrations from the 60 lowest exposed subjects. Price et  al. 
argue that this adjustment was inappropriate and introduced three 
alternative approaches, designated as ‘A’, ‘B’ and ‘C.’ Approach 
A  maintained the 60 lowest exposed subjects for background 
correction but subtracted mean rather than median values. Approach 
B subtracted the estimated mean from 136 subjects from factories that 
did not use benzene and Approach C subtracted the estimated mean 
from 133 subjects exposed to air concentrations <0.03 p.p.m. Price 
et al. justified Approach C with the following statement (p. 2096, left 
column, par. 5): ‘The third approach (C) is based upon the comment 
in Kim et al. (3) that the NS model predictions were “not reliable” 
below air benzene concentrations of 0.03 ppm.’ Well, Kim et al. (18) 
never used the quoted words ‘not reliable’ and employed all data for 
constructing models, save those from the 60 lowest exposed subjects 
(background sample). Although Kim et  al. limited their NS model 
‘predictions’ of DSM to benzene exposures at or <0.03 p.p.m., this 
would have not been possible if data <0.03 p.p.m. had been removed 
from the models (discussed with uncertainty analysis).

Figure 2 shows distributions of exposure concentrations under the 
different approaches for defining background samples (shown along 
the bottom of the figure). Air concentrations are presented at left for 
subjects comprising background samples and at right for the remain-
ing subjects available for modeling exposure–metabolite relation-
ships. The 60 lowest exposed subjects, used for background samples 
by Kim et al. and Approach A, represent a 21-fold range of benzene 
concentrations (<0.001–0.003  p.p.m.), whereas the 136 subjects 
for Approach B represent a 3660-fold range (<0.001–0.533 p.p.m.) 
and the 133 subjects for Approach C represent a 206-fold range 
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(<0.001–0.0299 p.p.m.). Thus, by increasing the numbers of subjects 
in background samples for Approaches B and C, Price et al. greatly 
increase the corresponding ranges of benzene concentrations and the 
attendant misclassification of exposure. Price et al. also make fewer 
data available for NS models under Approaches B and C and greatly 
reduce the ranges of modeled air concentrations. Whereas Kim et al. 
(and Approach A) employed 326 subjects covering a 29 000-fold 
range of air concentrations, Approach B includes 250 subjects cover-
ing a 5160-fold range and Approach C includes 252 subjects cover-
ing a 2900-fold range (Figure 2). By effectively removing much of 
the modeled data, under Approaches B and C, Price et al. widened 
confidence intervals for estimated parameters. Under Approach B, 
Price et al. created background and modeled samples that were highly 
overlapping in benzene concentrations and thereby introduced mis-
classification errors into the analysis and, under Approach C, Price 
et al. reduced the modeled data so as to diminish power to detect low 
exposure effects on metabolism. There should, therefore, be no sur-
prise that estimates of DSM under Approaches B and C would differ 
substantially from those of Approach A and Kim et al.

We recognize that methods for background adjustment other than 
that employed by Kim et al. could be used to investigate the DSM 
of benzene. For example, a concurrent estimation of background and 
exposure effects for the Tianjin data (same model, all data together) 
could have advantages (32,33). However, there appears to be no sci-
entific justification for arbitrarily expanding the range of benzene 
exposures in background samples by orders of magnitude while also 
reducing the numbers and ranges of modeled data (Figure 2).

4. Uncertainty analyses. Kim et  al. performed bootstrapping to 
estimate uncertainties for both the empirical analyses (18) and NS 
modeling (19) (Figure  1). Although bootstrap distributions for the 
empirical analyses accounted for sampling uncertainties as well as for 
use of the calibration model, those for the NS models only considered 
sampling uncertainties. In their reanalysis of the Tianjin data, Price 
et al. focused exclusively on the NS models even though the robust 

empirical analyses showed essentially the same trend of DSM 
(Figure 1). This is apparently because Kim et al. did not include the 
calibration model in uncertainty analyses for the NS models, but did so 
for the empirical analyses. In any case, Price et al. refer repeatedly to 
the calibration model and (on p. 2096, left column, par. 2) imply that 
uncertainties in Kim’s NS models were substantially greater than those 
reported. To test this conjecture, we repeated the bootstrap analyses for 
Kim’s NS models with and without calibration uncertainty. The results 
are given in Supplementary Material (Section 1, Tables S.1 and S.2), 
available at Carcinogenesis Online, and are summarized in Figure 3, 
which shows 50th, 10th and 90th percentiles of bootstrap distributions 
obtained either with calibration uncertainty (solid and dashed curves) 
or without calibration uncertainty (circles and error bars). Clearly, the 
calibration model added trivial uncertainty to trends of DSM reported 
by Kim et al., as would be expected from the earlier empirical results 
(Figure 1) and the fact that each calibration employed a rather large 
sample of subjects having both air and urinary measurements (n = 228).

Price et al. did not report parameters for their NS models of metab-
olite concentrations. Rather, results were presented as ratios of DSM 
values at the extremes of the range of modeled benzene concentrations 
between 0.03 and 88.9 p.p.m. (Note that Price et al. use ‘total metab-
olite production’ abbreviated ‘TMP’ instead of DSM.) Although we 
could not reproduce their findings, we discovered anomalous results 
in Price et  al.’s TMP ratios that point to unsound methods. Their 
uncertainty analyses—summarized by box-and-whisker plots in Price 
et al.’s Figure 2—are inconsistent with point estimates derived from 
their observed data distributions (given on p.  2096 in the first two 
paragraphs under ‘Results’). This is illustrated in our Figure 4, which 
juxtaposes the point estimates of Price’s TMP ratios with the corre-
sponding bootstrap distributions represented in Price et al.’s Figure 2. 
All point estimates of TMP ratios from Approaches A, B and C are 
biased upward relative to the confidence intervals estimated via boot-
strapping. This suggests that the procedure used to obtain parameter 
estimates from bootstrap samples was different from that used to 

Fig. 2.  Air concentrations of benzene observed across 386 subjects in the Tianjin dataset under different approaches for defining background samples. For each 
approach (shown at the bottom), exposure data are presented at left for subjects comprising background samples and at right for the remaining subjects available 
for modeling exposure–metabolite relationships.
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obtain the point estimates. Because bootstrap samples are generated 
from the observed data distributions, one would expect that the point 
estimates would lie within the significant mass of bootstrap distribu-
tions. For example, Figure 1 shows that 50th percentiles of the boot-
strap distributions from Kim et al. (19) (open circles) match almost 
perfectly NS modeling of the data distribution (dashed curve).

Although Price et al. provided insufficient details for us to deter-
mine the source(s) of these discrepancies, possible problems involve 
the error in their Equation (7) noted earlier and also Price et  al.’s 
adjustment for ‘model uncertainty’ (p. 2096, right column, par. 2) to 
generate bootstrap distributions, but apparently not for modeling the 

data distributions. Unfortunately, Price et  al. did not define ‘model 
uncertainty’ and provided no references for justification. If ‘model 
uncertainty’ is used in the context of say (46), where multiple models 
are shown to equally fit the data, then one could consider reconciling 
the predictions from the different models. Unfortunately, no efforts 
in this direction were made by Price et al. A consequence of adding 
this unjustified noise to the predictions of the NS models would be to 
increase the sizes of confidence intervals for the estimated parameters.

Under their Approach A, which used the same modeled and back-
ground samples as Kim et al., Price et al. reported a point estimate of 
the TMP ratio of 9.4 (p. 2096, right column, par. 5), which is quite 

Fig. 3.  Comparing uncertainty analyses of Kim et al. (19) with and without consideration of uncertainty from the calibration model (from Supplementary 
Material, Tables S.1 and S.2, available at Carcinogenesis Online). The open circles and error bars represent the 50th, 10th and 90th percentiles of bootstrap 
distributions (Supplementary Table S.1, available at Carcinogenesis Online), reproducing the original analyses of Kim et al., without considering uncertainty 
from the calibration model. The solid and dashed curves in Supplementary Figure S.1, available at Carcinogenesis Online, represent the corresponding 50th, 10th 
and 90th percentiles of new bootstrap distributions, which include uncertainty from the calibration model (Supplementary Table S.2, available at Carcinogenesis 
Online). Comparing the two sets of results, it is apparent that uncertainties from the calibration model contributed only trivially to the bootstrap distributions.

Fig. 4.  Reproduction of Figure 2 from Price et al. showing box-and-whisker plots of bootstrap distributions for ratios of total metabolite production (TMP) at 
benzene concentrations of 0.03 and 88.9 p.p.m. (Note that Price et al.’s TMP is equivalent to ‘DSM’ in this article). Values of TMP ratios designated with Xs 
were added by the authors of this article to identify point estimates for data distributions given by Price et al. (p. 2096 in the first two paragraphs under ‘Results’).
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similar to the value of 9.2 obtained from the NS models of Kim et al. 
Thus, even after substituting estimated means for the GM and median 
values used by Kim et al., Price recapitulated the finding of a 9-fold 
reduction in DSM of benzene between 0.03 and 88.9 p.p.m. Price et al. 
then redefined the background and modeled groups for Approaches 
B and C in a manner that would very likely obscure any effects of 
enhanced metabolism at low benzene exposures. Because NS model 
fits are both continuous and differentiable (47), model predictions of 
metabolite levels at 0.03 p.p.m., i.e. the lower bound used by Price 
et al. to define TMP ratios, are influenced by subjects exposed in a 
neighborhood around this air concentration. Whereas 90 subjects 
were available between 0.03 and 0.2 p.p.m. for Approach A, only 16 
and 17 subjects were available under Approaches B and C, respect-
ively. With very few data in the neighborhood around 0.03  p.p.m. 
under Approaches B and C, NS models of metabolite levels become 
unstable and have large variances at low air concentrations. Model 

instability would also be accentuated by inappropriate assignment of 
NS knots from Kim et al. for Approaches B and C, which have differ-
ent ranges and sample sizes.

To gain insight into Price’s alternative approaches, we generated 
bootstrap samples for NS models of subject-specific GMs (rather than 
mean values) under Approaches B and C, including all sources of 
uncertainty, at staged air concentrations between 0.03 and 88.9 p.p.m. 
(Supplementary Material, Section 2, Tables S.3 and S.4, available 
at Carcinogenesis Online). (Note that bootstrap distributions under 
Approach A were reported in Supplementary Table S.2, available at 
Carcinogenesis Online.) As shown in Figure 5, 10th and 50th percen-
tile values of DSM for Approaches B and C decrease dramatically 
compared with those for Approach A at air concentrations <0.1 p.p.m. 
because of the sparseness of data in this range and by large proportions 
of negative values from background adjustment. Indeed, our analyses 
indicate that Approaches B and C effectively precluded any attempt at 
elucidating DSM of benzene in the range of 0.03 p.p.m. (Figure 5), a 
value that Price et al. weighted heavily in their calculations.

5. Lung clearance. Price et al. suggest that Kim et al.’s conclusion 
of enhanced benzene metabolism at sub-p.p.m. exposures is at odds 
with current knowledge about ‘lung clearance.’ However, their dis-
course on this matter (p. 2095, left column, par. 3 and p. 2098, right 
column, par. 1) is illogical because they confuse the concept of passive 
clearance of benzene from the lung (by exhalation) with absorption of 
benzene in the lung (following inhalation). The concept of clearance 
relates to removal of a chemical from the blood or plasma and has 
units of volume per unit of time (48). Clearance represents the sum 
of all removal processes, including saturable metabolism and passive 
first-order excretion via the lung (exhaled air) and kidney (urine). For 
volatile compounds like benzene, passive excretion by exhalation 
accounts for substantial proportions of the inhaled dose (49). In com-
parison, urinary excretion of benzene constitutes <2% of the benzene 
dose in humans exposed to tens to hundreds of p.p.m. (15). With this 
in mind, it is difficult to understand Price’s statement (p. 2095, left 
column, par. 3) that ‘There is a consensus that once absorbed, benzene 
is almost completely metabolized and that benzene’s metabolites and 
any unreacted benzene are excreted in the urine (7,8). Indeed, nei-
ther of Price’s reference 7 or 8 (both are reports of U.S. governmental 
agencies) offers such consensus.

To consider the relative contributions of passive and metabolic 
clearance of benzene, we invoke mass balance arguments that underlie 
physiologically based pharmacokinetic modeling of volatile organic 
compounds generally (49) and benzene in particular (28,29,50). At 
the beginning of exposure, we can assume that virtually all ben-
zene entering the alveolar air is absorbed. Therefore, the ratio of the 
exhaled benzene concentration (Cexh) to the inhaled benzene concen-
tration (Cinh) should be about (1 – falv), falv being the alveolar fraction 
of the lung volume (the rest being dead-space for gas exchange). For 
human benzene exposures, falv has been estimated to be 0.72 (50). 
After prolonged exposure, equilibrium is reached between the con-
centrations of benzene in air and blood. It follows from straightfor-
ward calculations (Supplementary Material, Section 3, available at 
Carcinogenesis Online) that the ratio Cexh/Cinh is rather insensitive to 
the fraction of benzene metabolized Qmet/Qinh, where Qmet and Qinh 
are the quantities of benzene metabolized and inhaled per unit time, 
respectively. Equation (S3) of Supplementary Material, available at 
Carcinogenesis Online, indicates that Cexh/Cinh ranges between 0.28 
and 1. Thus, when Qmet/Qinh doubles in magnitude from 0.4 to 0.8, the 
corresponding value of Cexh/Cinh only decreases by 40% (from 0.71 to 
0.42). This suggests that a range of exhaled fractions would be com-
patible with a given metabolized fraction and vice versa. Nonetheless, 
the necessary interplay between Cexh/Cinh and Qmet/Qinh contradicts 
Price et al.’s surprising suggestion (p. 2098, right column, par. 1) that 
‘lung clearance’ can explain apparent increases in DSM without ‘… 
any change in the fraction of the absorbed dose that is metabolized.’

Despite insensitivity of the fraction exhaled to the fraction of 
metabolized benzene, Equation (S3) suggests that the relationship 
between Cexh/Cinh and Qmet/Qinh can be investigated by examining inhaled 
and exhaled air from humans exposed to a range of air concentrations. 

Fig. 5.  Comparing uncertainty analyses for natural spline models of 
total metabolite concentrations as functions of subject-specific geometric 
mean air concentrations under Price et al.’s Approaches A, B and C (from 
Supplementary Material, Tables S.2, S.3 and S.4, available at Carcinogenesis 
Online). The solid curves represent 50th percentiles of bootstrap distributions 
and the dashed curves represent 10th and 90th percentiles of bootstrap 
distributions.
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After exploring the literature, we extracted measurements from four 
human studies (51–54) that allowed us to estimate the ratio Cexh/Cinh 
and then used Equation (S3) to estimate Qmet/Qinh over a wide range 
of benzene exposures. Three of the studies involved controlled 
exposures of volunteer subjects to benzene concentrations between 
1.7 and 57 p.p.m. (52–54) and the fourth was an observational study 
of automobile mechanics exposed to air concentrations between 0.007 
and 0.205 p.p.m. (median = 0.024 p.p.m.) (51).

Data from these four human studies are described and summarized 
in Supplementary Material (Section 3 and Table S.5), available at 
Carcinogenesis Online. Measurements of inhaled and exhaled benzene 
show that Cexh/Cinh increased with benzene exposure from about 0.5 
to 0.7, whereas estimates of Qmet/Qinh decreased concomitantly from 
about 0.7–0.4. To put the results of Kim et al. into perspective, predicted 
values of Qmet/Qinh were used to estimate the corresponding values of 
DSM via Equation (S4) as described in Section 3 of Supplementary 
Material, available at Carcinogenesis Online. Overall, values of DSM 
decreased about 6-fold, from 509 µM/p.p.m. <0.2 p.p.m. (median value) 
to 86  µM/p.p.m. at 57  p.p.m. (mean value). As shown in Figure  6, 
these estimates of DSM are consistent with Kim’s models of urinary 
metabolite levels (18,19) and suggest that Price’s arguments regarding 
‘lung clearance’ are scientifically unfounded.

Discussion

The work of Kim et  al. (18–20) represents the most comprehen-
sive analyses of human metabolism of benzene, an environmentally 
ubiquitous carcinogen. The molecular epidemiologic investigation 
that generated the Tianjin data was conducted with the utmost care 
regarding study design, selection of participating subjects, collection 
of air and biological specimens and measurement of biomarkers. The 
high quality of these data allowed Kim et al. to tease out low-dose 
metabolic effects that eluded other investigators. By describing their 
methods in detail, the authors maintained the transparency required 
for scientific work. Indeed, Price et al. (34) were able to successfully 
reproduce the NS modeling results of Kim et al. (19), which showed 
enhanced metabolism of benzene at low exposure levels.

Because virtually all humans are exposed to benzene from petrol-
eum products and combustion processes, including tobacco smoking, 
Kim’s finding of increased benzene metabolism at air concentrations 
<1 p.p.m. has public health implications. And even though Kim et al. 
did not estimate human health risks associated with sub-p.p.m. ben-
zene exposures, their results suggest that these risks could be greater 
than expected from investigations of heavily exposed workers. 

Indeed, the recent report of increased risks of lymphohematopoietic 
cancers at average benzene exposures <1 p.p.m. (3) lends support to 
this argument.

After examining Price et  al.’s reanalyses of the Tianjin data, we 
documented major shortcomings in the authors’ rationale, meth-
ods and scientific rigor, the most serious of which are summarized 
as follows. First, Price et al. ignored the totality of evidence, which 
indicates that benzene is more efficiently metabolized at air concen-
trations <1 p.p.m. They did not mention that robust statistical analyses 
of the Tianjin data—published in Carcinogenesis (18)—reported a 
14-fold reduction in DSM between 0.027 and 15.4 p.p.m. or that fol-
low-up kinetic modeling pointed to a second metabolic pathway that 
was active at benzene concentrations <1 p.p.m. (32,33). They over-
looked corroborating evidence for sub-p.p.m. metabolic effects from 
measurements of benzene-derived protein adducts (21–26) and from 
the only controlled exposures of human subjects <1 p.p.m. (31). Good 
science requires a fuller presentation of the literature. Second, Price 
et al. did not provide sufficient details concerning their NS modeling 
and uncertainty analyses to allow independent confirmation of their 
results. This lack of transparency and inconsistent results (Figure 4) 
make the findings of Price et al. unreliable. Third, Price et al. reana-
lyzed data in a manner that was virtually guaranteed to obscure low-
dose effects of benzene exposure. When background adjustment with 
estimated mean metabolite levels from a sample of 60 subjects with 
demonstrably low benzene exposures (Approach A) recapitulated 
Kim’s findings, Price et  al. turned to alternatives (Approaches B 
and C) that magnified uncertainties and introduced misclassification 
errors (Figure 5). The authors fostered these alternatives in spite of 
subject-specific benzene measurements showing that background and 
modeled samples for Approaches B and C were unsuitable for dis-
criminating metabolic changes at low air concentrations (Figure 2). 
Fourth, Price et  al. promoted an illogical mechanistic argument to 
suggest that the apparent enhancement of low-dose benzene metab-
olism could be explained by ‘lung clearance.’ In fact, a careful exam-
ination of the published human literature on passive clearance of 
benzene from the lungs provides further evidence of enhanced low-
dose metabolism of benzene, consistent with the findings of Kim 
et al. (Figure 6).

These shortcomings raise questions whether Price’s reanalysis 
of Kim’s work was motivated by scientific skepticism or by an 
effort to obfuscate the low-dose metabolism of benzene. In either 
case, we regard the above shortcomings as sufficient to justify 
retraction of Price et al. (34) from Carcinogenesis (http://publica-
tionethics.org/).

Fig. 6.  Predictions of dose-specific metabolism based on measurements of benzene concentrations in inhaled and exhaled air from four published studies (51–54) 
juxtaposed with the modeling results of Kim et al. given in Supplementary Material (Table S.2), available at Carcinogenesis Online. The inhaled/exhaled air 
studies are described in Supplementary Material (Section 3) and the data and calculations are given in Table S.6, available at Carcinogenesis Online.
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Supplementary material

Supplementary Material, Tables 1–5 and Figure  1 can be found at 
http://carcin.oxfordjournals.org/
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