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Abstract

The mechanism of toxicity of the leukemogen benzene is not entirely known. This pilot study used 

RNA-sequencing (RNA-seq) technology to examine the effect of benzene exposure on gene 

expression in peripheral blood mononuclear cells obtained from 10 workers occupationally 

exposed to high levels of benzene (≥5 ppm) in air and 10 matched unexposed control workers, 

from a large study (n = 125) in which gene expression was previously measured by microarray. 

RNA-seq is more sensitive and has a wider dynamic range for the quantification of gene 

expression. Further, it has the ability to detect novel transcripts and alternative splice variants. The 

main conclusions from our analysis of the 20 workers by RNA-seq are as follows: The Pearson 

correlation between the two technical replicates for the RNA-seq experiments was 0.98 and the 

correlation between RNA-seq and microarray signals for the 20 subjects was around 0.6. 60% of 

the transcripts with detected reads from the RNA-seq experiments did not have corresponding 

probes on the microarrays. Fifty-three percent of the transcripts detected by RNA-seq and 99% of 

those with probes on the microarray were protein-coding. There was a significant overlap (P < 

0.05) in transcripts declared differentially expressed due to benzene exposure using the two 

technologies. About 20% of the transcripts declared differentially expressed using the RNA-seq 

data were non-coding transcripts. Six transcripts were determined (false-discovery rate < 0.05) to 

be alternatively spliced as a result of benzene exposure. Overall, this pilot study shows that RNA-
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seq can complement the information obtained by microarray in the analysis of changes in 

transcript expression from chemical exposures.
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INTRODUCTION

Benzene, a component of gasoline, is associated with various hematological cancers 

[Steinmaus et al., 2008; Vlaanderen et al., 2010]. Multiple possible mechanisms of action 

are thought to be involved in benzene toxicity [Rappaport et al., 2009; Zhang et al., 2010; 

Smith et al., 2011; McHale et al., 2012]. Previously, using microarrays, we reported dose-

dependent changes in gene expression in peripheral blood mononuclear cells (PBMCs) 

associated with exposures to benzene ranging from less than 1 ppm to greater than 10 ppm 

in 83 workers in shoe manufacturing plants in China, compared to unexposed controls 

[McHale et al., 2011]. We observed significant effects on the expression of a relatively large 

number of genes across the range of exposures. The acute myeloid leukemia pathway and 

immune response related pathways were among the biochemical pathways that were found 

to be significantly affected in a dose-dependent manner.

Next generation sequencing [Wang et al., 2009] of expressed transcripts (RNA-seq) is a 

newer alternate technology to the hybridization and probe-specific-based microarray 

technology for quantification of transcript expression. This technology has been shown to be 

more sensitive than microarrays in detecting transcripts expressed at low levels [Marioni et 

al., 2008; Su et al., 2011] and differentially expressed transcripts [Liu et al., 2011] and also 

to have a greater dynamic range than microarrays [Raghavachari et al., 2012]. More 

importantly, RNA-seq is not restricted to the measurement of expression for a prespecified 

set of transcripts but is able to quantify all expressed transcripts including non-coding ones, 

for example, see [Beane et al., 2011] where the authors found pseudogenes, processed 

transcripts, long intergenic non-coding RNAs (lincRNAs) among those transcripts that were 

differentially expressed between smokers and non-smokers in the epithelial cells of their 

bronchial airways. Further, there is potential for discovery of novel transcripts and also for 

the detection of alternative splicing events resulting from a perturbation to control 

conditions (e.g., alternative splicing was detected in transcripts obtained from kidney and 

liver tissue samples [Marioni et al., 2008] and in the peripheral blood of patients with sickle 

cell disease [Raghavachari et al., 2012]). The comparison of RNA-seq technology with 

microarrays is described in greater detail in an accompanying paper in this issue [McHale et 

al., submitted].

This manuscript describes a pilot study designed to test the application of RNA-seq to 

estimate changes in transcript expression of PBMCs in workers exposed to benzene. The 

samples were chosen from a subset of 10 highly exposed workers and a corresponding set of 

10 matched controls in the study described in our previous study [McHale et al., 2011]. The 

objectives of our current study were as follows: (1) Estimate the technical replicability of the 
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RNA-seq approach. (2) Estimate the correlation between transcript expression levels as 

quantified by RNA-seq and the corresponding levels as determined by microarray. (3) 

Estimate the overlap of transcripts declared differentially expressed as a result of high 

exposure to benzene by the two technologies. (4) Determine if there are transcripts that are 

alternatively spliced as a result of benzene exposure.

MATERIAL AND METHODS

Study Subjects and Exposure Assessment

All subjects were from a molecular epidemiology study of occupational exposure to benzene 

that comprised 250 benzene-exposed shoe manufacturing workers and 140 unexposed age- 

and sex-matched controls who worked in three clothes-manufacturing factories in the same 

region near Tianjin, China [Vermeulen et al., 2004; Lan et al., 2006]. This study complied 

with all applicable requirements of U.S. and Chinese regulations, including institutional 

review board approval. Participation was voluntary, and written informed consent was 

obtained.

Exposure assessment to benzene was performed as described previously [Vermeulen et al., 

2004]. For this study, we categorized exposure groups using mean individual air benzene 

measurements obtained during the 3 months preceding phlebotomy. McHale et al. analyzed 

global gene expression in 125 subjects in five exposure categories—11 workers with very 

high exposure (>10 ppm), 13 with high exposure (5–10 ppm), 30 with low exposure (<1 

ppm), 29 with very low exposure (<<1 ppm), and a set of 42 matched controls, using 

Illumina HumanRef-8 V2 BeadChips [McHale et al., 2011]. In this pilot study, we analyzed 

global transcript expression by RNA-seq in subsets of five subjects from each of the two 

highest exposure categories (5–10 ppm and >10 ppm) and in 10 unexposed controls, chosen 

and matched by age, sex, and smoking status. Mean age (± SD) for the exposed workers 

were 29.9 ± 11.1 and 29.2 ± 9 for the control workers. There were eight women and eight 

non-smokers in each group. In this article, we have compared differential expression by 

microarray and RNA-seq data in the 10 control versus 10 highly exposed subjects, analyzed 

by both methods. In addition, we have compared the RNA-seq data with the microarray data 

from all the 42 controls and 24 highly exposed subjects.

Biological sample collection was described in McHale et al. [2011]. RNA-Seq libraries were 

prepared from the PBMC RNA (1 µg) using Illumina’s mRNA TruSeq protocol, and 

sequenced on an Illumina HiSeq 2000. The first step in the TruSeq protocol workflow 

involves purifying the poly-A containing mRNA molecules. In the same experiment, using 

the same protocol, we also sequenced two replicates of Stratagene Universal Human 

Reference RNA (Stratagene), which is composed of 10 different human cell lines (Agilent 

Technologies, Santa Clara), to assess the technical replicability of the RNA-seq 

experiments.

Data Preprocessing

Paired-end Illumina reads (in .fastq files) were mapped to hg19 (Genome Reference 

Consortium GRCh37) using Tophat [Trapnell et al., 2009] followed by Cufflinks [Trapnell 
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et al., 2010] for transcript assembly and estimation of transcript and transcript isoform 

expression levels. The fragment bias correction option [Roberts et al., 2011] was used in the 

Cufflinks program. The expression levels are provided in terms of FPKM (fragments per 

kilobase of exon model per million fragments mapped) reads. The resulting reads were 

quantile normalized across the 20 study subjects.

Identification of Coding and Non-Coding Transcripts

The Ensembl IDs of the transcripts identified using the RNA-seq data were used to query the 

BioMart database [Haider et al., 2009; Smedley et al., 2009; Guberman et al., 2011] for 

coding/non-coding information. The queries were made using the getBM function in the 

biomaRt package [Durinck et al., 2005] in R[Ihaka and Gentleman, 1996]. The relevant 

attribute in these queries was “gene_biotype.” Non-coding transcripts on the Illumina 

HumanRef-8 V2 BeadChips platform were identified as probes in the associated annotation 

file with RefSeq IDs [Pruitt et al., 2007] starting with “NR_” or “XR_.”

Differential Expression Analyses

To identify transcripts differentially expressed between the controls and the exposed 

subjects, we fit negative binomial generalized linear models given in Eq. (1) using the 

glm.nb function in R[Ihaka and Gentleman, 1996].

(1)

Where λij is the FPKM reads of the jth transcript on the ith subject and Xij = 0 or 1 according 

to whether the ith subject is a control or exposed subject. These models are used to estimate 

exp(b), the change in mean FPKM reads of the jth transcript from the control to the exposed 

workers. The resulting fits of the two models are subject to goodness of fit tests [McCullagh 

and Nelder, 1989]. The first one is a chi-squared test using the estimated residual degrees of 

freedom on the deviance of the model fit. The second goodness of fit tests the normality of 

the standardized deviance residuals of the model fit using the Anderson-Darling test. A 

model fit is deemed to pass the goodness of fit tests if the P-values from the two tests are 

each greater than 0.1. In addition to the above parametric model, we also use the non-

parametric Wilcoxon rank sum test [Wilcoxon et al., 1970] to estimate the significance of 

the difference in median FPKM reads of the jth transcript in the control and exposed works. 

From the above analyzes, differentially expressed transcripts are identified as those with a 

false-discovery rate (FDR) [Benjamini and Hochberg, 1995] less than 0.05.

Alternative Splicing Analyses

To identify transcripts that are differentially spliced with benzene exposure, we fit two 

negative binomial generalized linear models given in Eqs. (2) and (3) using the glm.nb 

function in R.

(2)
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(3)

where λij is the FPKM reads of the jth transcript isoform on the ith subject and Xij = 0 or 1 

according to whether the ith subject is one of the controls or one of the exposed. Zij gives the 

index of the particular transcript isoform being considered for the jth transcript and lies in ․ 

{1, 2, ⋯, nj} I[k = = z] is equal to 1 if the indices k and z are equal else it is equal to 0. The 

model implied by Eq. (3) is nested inside the one implied by Eq. (2). The additional 3 nj 

terms in Eq. (2) attempts to capture the effect on the expression level reads due to the 

interaction between exposure to benzene and a particular isoform of transcript j. A 

likelihood ratio test of the model fits using Eqs. (2) and (3) is used to assess the significance 

that a transcript is not differentially spliced as a result of benzene exposure. In other words, 

the test is used to assess the significance that the changes in mean expression levels due to 

benzene exposure of a given transcript are the same across all the identified isoforms. From 

the above analyses, transcripts that are alternatively spliced as a result of benzene exposure 

are identified as those with a FDR [Benjamini and Hochberg, 1995] less than 0.05.

Pathway Analyses

SEPEA, a network-based pathway enrichment method described in detail in Thomas et al. 

[2009], was used to evaluate the linkage between the benzene exposure and the KEGG 

human pathways [Kanehisa and Goto, 2000; Kanehisa et al., 2006, 2008] using the 

estimated expression levels for the control and exposed workers. Three analytic methods 

were described in Thomas et al. [2009]; we used SEPEA_NT3 in this study.

RESULTS AND DISCUSSION

Alignment to the Genome

111 ± 20 million nt (100 bp paired-end reads) were generated per sample. 79 ± 6% of the 

reads was mapped to the human genome (hg19). This corresponds well with the experiments 

performed by Toung et al. who in part estimated the percent reads mapped using data 

derived at varying sequencing depths [Toung et al., 2011]. At about 100 million reads they 

estimated a 79% total alignment to the genome. Reads were detected in at least one of the 20 

worker samples for 31,916 transcripts, in this study. This represents an overlap of 12,957 

transcripts with the 18,190 transcripts that had probes on the microarray platform used in 

McHale et al. [2011]. Thus the RNA-seq experiments detected reads for 18,959 transcripts 

that did not have probes on the microarrays. Fifty-three percent of 31,916 transcripts were 

known to be protein coding while the remaining 47% were non-coding transcripts (Fig. 1). 

This contrasts with only 0.85% (155 out of 18,190) of the probes on the microarray being 

targeted to non-coding transcripts. It should be noted that the RNA-seq libraries were 

generated from poly-A enriched RNA samples. It is quite plausible that different non-coding 

transcripts may be identified using alternate library preparation protocols [Beane et al., 

2011]. Genes have been typically associated with transcripts that have protein-coding 

capacity [Gerstein et al., 2007]. With the discovery that a significant part of transcription 

leads to non-coding transcripts, the definition of genes needs refinement [Gingeras, 2007]. 
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Hence, we use the term “transcript” instead of “gene” (as suggested by Gingeras [2007]) in 

this article to refer to mapped reads from both the RNA-seq and microarray data.

Replication Within and Across Platforms

The correlation of the FPKM reads between the two technical replicates used was 0.98, 

suggesting a good technical replicability of the expression reads using RNA-seq. [Marioni et 

al., 2008] also showed high technical replicability of RNA-seq data. The correlation between 

the transcript expression signals as measured by Illumina microarrays and Illumina HiSeq 

2000 was 0.596 on average (interquartile range: 0.592–0.601) across all the 20 samples. This 

value is within the range of correlation values between microarrays and RNA-seq data in the 

published literature [Marioni et al., 2008; Bradford et al., 2010]. Figure 2 displays the 

relationship between microarray and the RNA-seq expression values on the log scale for a 

given sample in our study. The flat cluster of points at the low intensity values for the 

microarray suggests that the RNA-seq-based approach is better able to detect transcripts 

expressed at lower levels than microarrays and/or that the RNA-seq approach could detect 

particular isoforms of transcripts that did not have matching probes on the microarray.

Differentially Expressed Transcripts and Altered Biochemical Pathways

A total of 184 transcripts were identified as being differentially expressed between the 

control and exposed workers using the negative binomial generalized linear models. This 

number was reduced to 146 when only the transcripts that passed the goodness of fit tests 

were included. The top 10 differentially expressed transcripts and KEGG pathways 

identified by RNA-seq are given in Tables 1 and 2, respectively. The complete list of 

transcript expression changes and KEGG pathway changes are given in Supporting 

Information Tables S1 and S2. The non-parametric test did not identify any differentially 

expressed transcripts. Therefore, as we attempt to be more rigorous and make fewer 

assumptions about the distribution of reads from the RNA-seq experiments we identify 

fewer differentially expressed transcripts. The negative binomial probability distribution is 

commonly used to model reads from RNA-seq experiments [Anders and Huber, 2010; 

Robinson and Oshlack, 2010]. The results here suggest that one must be cautious in 

interpreting RNA-seq results that utilize either poisson or negative binomial distribution 

assumptions.

A comparison of mean log2 fold changes of expression as determined using data from 

corresponding transcripts on the microarray and RNA-seq technology is shown in Figure 3. 

There is a significant correlation (P < 2.2 × 10−16) of 0.53 between the corresponding fold 

changes. This correlation is of the same order as those detected by other authors in literature. 

For example, Marioni et al. estimated a correlation of 0.73 between fold changes by the two 

technologies of transcript expression in the kidney versus the liver of a single human male 

[Marioni et al., 2008], Liu et al. estimated a correlation of 0.61 of fold changes in transcript 

expression in the cerebellum of human, chimpanzee, and rhesus samples [Liu et al., 2011], 

Su et al. estimated a correlation of 0.49 of fold changes in transcript expression in the 

kidneys of rats treated with aristolochic acid [Su et al., 2011] and Beane et al. estimated a 

correlation of 0.36 of fold changes in transcript expression in the bronchial airway of 

smokers versus non-smokers [Beane et al., 2011]. The majority of changes in expression 
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associated with benzene exposure determined by RNA-seq were subtle, with fold-changes of 

≤2, in agreement with data from previous microarray analyses in McHale et al. [2011] The 

estimated fold-changes using the RNA-seq data was quite variable for transcripts with 

relatively low expression and also low fold-changes in the microarray data (see the black 

group of crosses in the center of Fig. 3). This may suggest that the RNA-seq data was more 

sensitive at detecting changes in low expressed transcripts.

We compared the differentially expressed transcripts identified by RNA-seq and microarray. 

Differential expression analyses using the microarray data from the 10 cases and 10 control 

subjects revealed only one differentially expressed transcript (LOC161931) at a FDR < 0.05, 

compared with 146 identified by RNA-seq. There were no reads for this transcript in the 

RNA-seq data. It has previously been reported that RNA-seq can detect a larger number of 

differentially expressed transcripts than microarrays can [Marioni et al., 2008; Beane et al., 

2011; Liu et al., 2011; Su et al., 2011; Raghavachari et al., 2012].

Analysis of the microarray data from all of the controls (n = 42) and highly exposed subjects 

(n = 24) revealed 2,553 differentially expressed transcripts. Among the 146 transcripts 

declared differentially expressed by RNA-Seq, 89 had corresponding probes on the Illumina 

microarray platform [McHale et al., 2011]. Of these 89 probes, 32 were identified as 

commonly differentially expressed using data from the 10 controls and 10 exposed subjects 

analyzed by RNA-seq and from the 42 controls and 24 subjects analyzed by microarray. 

This overlap among the 12,957 transcripts that had corresponding probes on the microarrays 

and are detected in the RNA-seq experiments is statistically significant (P = 1.5 × 10−6 from 

Fisher’s exact test). The 57 transcripts not detected as differentially expressed by the 

microarrays represent potential novel findings of the newer RNA-seq technology. A large 

number of transcripts (n = 1,937) identified as differentially expressed by the microarrays 

were not detected by the RNA-seq. This could be a consequence of lower statistical power 

due to smaller sample size in the RNA-seq experiments. There are of course caveats to the 

comparison of the smaller RNA-seq dataset to the larger microarray dataset as opposed to 

comparing data only from the same subjects. First, there is the obvious sample size 

difference (42 vs. 24 subjects as compared with 10 vs. 10 subjects). Second, the subjects 

conditions are not matched as well on the potential confounders to changes in transcript 

expression (gender, smoking status).

Of the transcripts differentially expressed using the RNA-seq data, 80% (118 out of 146) 

were protein-coding while the rest were non-coding (Fig. 1). In contrast, 99.8% (2,548 out 

of 2,553) of transcripts identified as differentially expressed by microarray were protein 

coding transcripts. This reflects this microarray platform’s bias by design toward protein 

coding transcripts.

Transcripts Alternatively Spliced With Benzene Exposure

Six transcripts [ZNF567 zinc finger protein 567, PRDX6 peroxiredoxin 6, RP11-248C1.2, 

ZWILCH Zwilch kinetochore associated homolog (drosophila), ETFB electron transfer 

flavoprotein beta polypeptide, and N4BP2 NEDD4 binding protein 2] were identified as 

differentially spliced (FDR < 0.05) with exposure to benzene (Fig. 4). This provides 
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evidence that alternative splicing of transcripts in PBMCs could be a response to benzene 

exposure.

CONCLUSIONS

Data from RNA-seq and microarray analyses of benzene-exposed subjects and controls were 

well correlated at the transcript and fold-change levels though RNA-seq was more sensitive 

in detecting transcripts with low levels of expression. RNA-seq identified more transcripts 

as differentially expressed than microarrays and detected differential expression of non-

coding transcripts. RNA-seq also identified alternative splicing as a potential mechanism of 

benzene toxicity. Thus, RNA-seq data can complement microarray data in toxicogenomic 

studies and provide novel information. We are currently expanding our benzene RNA-Seq 

study to analyze more samples and additional alterations in the transcriptome.
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Fig. 1. 
Transcript types detected in the RNA-seq data. The results are given in terms of percentages 

of transcripts with detectable reads and also in terms of transcripts declared differentially 

expressed due to benzene exposure.
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Fig. 2. 
Comparison of log-2 transformed transcript expression signals in a sample using 

microarrays and RNA-seq. The signals from microarrays are in intensity units while those 

from RNA-seq are in FPKM units. The signals are from one of the exposed samples in the 

study. The correlation between the signals is 0.588.
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Fig. 3. 
Comparison of log-2 transformed estimated fold changes using microarrays and RNA-seq. 

The points are colored according to the relative mean expression level of the transcript on 

the microarray platform. The mean log2 expression levels on the microarray ranged from 6.5 

to 16. The transcripts with log2 expression levels less than 8 are colored black (low 

expressed), with expression levels between 8 and 14 are colored green and greater than 14 

are colored red (high expressed).
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Fig. 4. 
Alternatively spliced transcripts due to benzene exposure. The x-axes of the subplots for the 

six transcripts contain the indices of the all the isoforms of the corresponding transcripts 

with detectable reads from the RNA-seq experiment. The scale on the y-axes corresponds to 

the mean fold change. The error bars correspond to the 95% confidence intervals of these 

mean fold changes. The dotted line corresponds to a fold change of 1.
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TABLE1

Top 10 Differentially Expressed Transcripts Identified by the Negative Binomial Models That Passed the 

Goodness of Fit Tests

Gene symbol Gene name Gene type Fold change FDR

CMYA5a Cardiomyopathy associated 5 Protein coding 2.00 0.000

ZNF703a Zinc finger protein 703 Protein coding 0.51 0.000

TTC9Ba Tetratricopeptide repeat domain 9B Protein coding 2.39 0.001

COG7a Component of oligomeric golgi complex 7 Protein coding 1.18 0.001

PLCL1a Phospholipase C-like 1 Protein coding 17.27 0.002

SIK2 Salt-inducible kinase 2 Protein coding 1.22 0.002

RBM23a RNA binding motif protein 23 Protein coding 1.25 0.002

RP5-837I24.1 NA Pseudogene 0.87 0.003

AC092135.1 NA Protein coding 1.32 0.003

GOT1a Glutamic-Oxaloacetic Transaminase 1 Protein coding 1.26 0.003

a
This gene has a probe on Illumina HumanRef-8 V2 BeadChip.
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TABLE 2

Top 10 Pathways Altered by Benzene Exposure

KEGG pathway name P

Fc epsilon RI signaling pathwaya 0.000

MAPK signaling pathwaya 0.000

Adipocytokine signaling pathwaya 0.001

Leishmaniasis 0.001

Cysteine and methionine metabolism 0.002

Type II diabetes mellitus 0.002

Graft-versus-host disease 0.003

Pancreatic cancera 0.003

Insulin signaling pathwaya 0.004

Proteasome 0.005

a
This pathway was detected as significant in either one of the two highest dose ranges of benzene exposure in the earlier microarray analyses 

[McHale et al., 2011].
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