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Genome sequencing efforts have revealed a strikingly large number of uncharacterized genes, including
poorly or uncharacterized metabolic enzymes, metabolites, and metabolic networks that operate in normal
physiology, and those enzymes and pathways that may be rewired under pathological conditions. Although
deciphering the functions of the uncharacterized metabolic genome is a challenging prospect, it also
presents an opportunity for identifying novel metabolic nodes that may be important in disease therapy.
In this review, we will discuss the chemoproteomic and metabolomic platforms used in identifying, charac-
terizing, and targeting nodal metabolic pathways important in physiology and disease, describing an inte-
grated workflow for functional mapping of metabolic enzymes.
One of the most provocative findings to come out of the Hu-

man Genome Project was the discovery of a large number of

genes encoding proteins with unknown function, including

many uncharacterized enzymes that participate in the meta-

bolism of small-molecule metabolites (Venter et al., 2001).

These data revealed that our knowledge of cellular meta-

bolism was far less complete than we thought, and opened

up the possibility for yet undiscovered landscapes of metab-

olites and metabolic pathways. Indeed, even our under-

standing of well-characterized enzymes and their metabolic

functions in normal physiology remains largely incomplete,

especially in pathological states where these pathways may

be rewired or possess unique or novel functions. We are

now faced with the grand challenge of deciphering these un-

characterized metabolic networks and disentangling the

normal and disease roles of previously described metabolic

pathways. This undiscovered metabolic space presents an

exciting opportunity for discoveries in basic biology and

opens up the potential for targeting unique or novel metabolic

drivers of diseases related to dysregulated metabolism, such

as obesity, diabetes, atherosclerosis, cancer, infection, and

inflammatory diseases. Recent work has also demonstrated

the regulatory importance of metabolite flux through a given

pathway and the diverse roles of small biomolecules beyond

classical metabolism, including signaling and epigenetic, tran-

scriptional, and posttranslational regulation of critical cell

functions.

In this review, we will describe how innovative metabolic

mapping techniques have been used to successfully identify,

characterize, and pharmacologically target nodal metabolic

pathways important inmammalian physiology and disease. Spe-

cifically, we will discuss using chemoproteomic and metabolo-

mic approaches to globally assess enzyme activities, developing

chemical tools to interrogate enzyme function, and mapping the

metabolic pathways and metabolite-driven regulation controlled

by these enzymes.
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Chemoproteomic Approaches to Assess the Functional
State of Enzymes in Complex Biological Systems
One of the key challenges of studying enzyme function has been

the ability to assay for explicit metabolic enzyme activities of

specific proteins in complex biological systems, especially for

enzymes with no known substrate or function. Developing a

method for global assessment of enzyme functionality remains

difficult because (1) enzymes can be regulated by posttransla-

tional events in vivo, which are poorly detected with standard

gene and protein expression profiling; (2) a substantial propor-

tion of the proteome remains functionally uncharacterized,

preventing the use of substrate-activity assays; and (3) the

physicochemical properties of many enzymes complicate their

analysis in biological samples (e.g., low abundance, difficulty in

enrichment).

One powerful method developed to address these challenges

is activity-based protein profiling (ABPP), a chemoproteomic

platform that uses activity-based probes (ABPs) that measure

the functional state of enzymes en masse in complex biological

samples (Evans and Cravatt, 2006; Moellering and Cravatt,

2012;Nomura et al., 2010a). AnABPconsists of a chemical group

that covalently reacts with the active sites of enzymes across a

particular enzyme class based on chemical reactivity within a

conserved catalytic architecture, andan analytical handle that fa-

cilitates a simultaneous read out enzyme activities (Figure 1A).

This analytical handle can be a fluorophore for depicting enzyme

activities, or a biotin handle for enrichment, identification,

and quantification of activities with mass spectrometry-based

proteomics (Figure 1B). To date, there are ABPs for more

than a dozen enzyme classes, including hydrolases, proteases,

kinases, phosphatases, glycosidases, caspases, oxygenases,

oxidoreductases, and nitrilases (Adam et al., 2001; Barglow

and Cravatt, 2006; Kato et al., 2005; Kidd et al., 2001; Liu et al.,

1999; Patricelli et al., 2007; Saghatelian et al., 2004a; Walls

et al., 2009; Weerapana et al., 2008; Williams et al., 2006; Xiao

et al., 2013).
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Figure 1. Activity-Based Protein Profiling
(A) Examples of activity-based probes.
(B) Gel-based ABPP and ABPP-MudPIT platforms for fluorescent and mass-spectrometry-based analysis of enzyme activities. Rh, rhodamine; B, biotin.
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ABPP overcomes many of the traditional challenges facing

enzyme activity assessment in complex samples. First, these

probes selectively and simultaneously label only active, but not

inactive, enzymes in a class, revealing changes in enzyme activ-

ity distinct from alterations in protein or transcript expression

level (Jessani et al., 2005; Kidd et al., 2001). Second, ABPs
1172 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
enable enzyme activity assessment of uncharacterized enzymes

because these probes react with active sites based on class-

wide conserved chemical reactivity (Bachovchin et al., 2010;

Chiang et al., 2006; Weerapana et al., 2008). Third, ABPs allow

enrichment of specific classes of enzymes based on shared

functional properties, facilitating characterization of enzymes
d All rights reserved
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Figure 2. Competitive ABPP Platforms
(A) ABPP-SILAC.
(B) Fluopol-ABPP.
(C) Isotope-ABPP.
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that may be in low abundance or are embedded in a membrane

(Bachovchin et al., 2010; Weerapana et al., 2010).

Since the initial development by Cravatt and Bogyo, ABPP

platforms have incorporated chemical and analytical methods

that enable detecting enzyme activities in cells or in vivo, map-

ping sites of probe labeling in the proteome, and quantitative

assessment of enzyme activities. One of the most significant ad-

vances in ABPP platforms has been the complementation with

bioorthogonal ‘‘click chemistry’’ methods (Speers et al., 2003).

Bioorthogonal ABPs bearing an alkyne handle (instead of rhoda-
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mine or biotin) can be treated in vitro, in situ, or even in vivo

to label active enzymes, facilitating target identification by sub-

sequently appending an analytical handle (e.g., rhodamine-

azide or biotin-azide) in vitro through copper-catalyzed ‘‘click

chemistry’’ (Speers et al., 2003). Another advancement of

the method involves coupling ABPP with stable isotopic labeling

of cells (ABPP-SILAC; Figure 2A) for quantitative proteomic

analysis of enzyme activities (Adibekian et al., 2011). To

improve the throughput of gel-based or mass spectrometry-

based ABPP, Bachovchin and colleagues adapted a method
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1173
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for high-throughput screening using fluorescence polarization

(fluopol-ABPP; Figure 2B), primarily used for inhibitor screening

(Bachovchin et al., 2009). Recently, Weerapana and colleagues

developed an ABPP platform called tandem orthogonal proteol-

ysis ABPP (TOP-ABPP; Weerapana et al., 2008) to identify hy-

perreactivity and functionality of specific amino acid hotspots

within the proteome. In TOP-ABPP, alkyne-bearing ABPs or

reactivity-based probes (RBPs) are ‘‘clicked’’ to azide-bearing

tags that contain chemically or TEV protease cleavable linkers

and a biotin handle, allowing enrichment of probe-bound pro-

teins and subsequent release of probe-bound peptides upon

tandem digestions with trypsin and TEV protease. This TOP-

ABPP can be adapted for quantitative proteomics by incorpo-

rating an isotopically ‘‘heavy’’ labeled valine into the linker and

measuring the ratio of heavy to light labeling on a protein or at

a particular residue, a platform called isotopic TOP-ABPP (iso-

TOP-ABPP; Figure 2C; Weerapana et al., 2010). These ABPP

platforms have been successfully used to identify and charac-

terize enzyme activities in various human diseases, including

cancer, obesity, neurodegenerative diseases, and microbial

infection (Blais et al., 2010; Dominguez et al., 2014; Nomura

et al., 2010b, 2011a; Sadler et al., 2012; Singaravelu et al., 2010).

We review several representative examples of how ABPP

has been used to discover metabolic drivers of disease. In

particular, ABPP has been widely used to study the serine hydro-

lase superfamily of enzymes using the serine hydrolase-directed

ABPs fluorophosphonate (FP)-rhodamine and FP-biotin that

covalently phosphorylate the active site serine of nearly all of

the >200 serine hydrolase enzymes (Bachovchin et al., 2010;

Kidd et al., 2001; Liu et al., 1999). The serine hydrolase family

is one of the largest metabolic enzyme classes in themammalian

genome, though many of the family members are poorly or

incompletely characterized (Long and Cravatt, 2011). This class

encompassesmany types of enzymes, including hydrolases, es-

terases, lipases, proteases, thioesterases, and peptidases (Long

and Cravatt, 2011). Through mining serine hydrolase activities

with ABPP, several key metabolic or proteolytic drivers and bio-

markers of cancer have been identified, including KIAA1363,

monoacylglycerol lipase (MAGL), and retinoblastoma-binding

protein 9 (RBBP9; Chiang et al., 2006; Jessani et al., 2002;

Nomura et al., 2010b; Shields et al., 2010). Serine hydrolase

profiling was also used to discover that mutations in the

poorly characterized alpha/beta-hydrolase domain-containing

12 (ABHD12) in patients with a neurodegenerative disease

known as PHARC (polyneuropathy, hearing loss, ataxia, retinitis

pigmentosa, and cataracts) encoded a functionally inactive

ABHD12. Despite the lack of functional information regarding

ABHD12, Blankman and colleagues used ABPP to reveal inac-

tive ABHD12 in PHARC tissues and followed with metabolomic

techniques (discussed later in this review) to ascertain the func-

tion of ABHD12 and its role in PHARC pathogenesis (Blankman

et al., 2013). Serine hydrolase ABPs have also been used to iden-

tify important enzyme activities in bacterial and viral infections

such as carboxylesterase 1 (CES1) as an upregulated enzyme

activity in hepatitis C virus-infected hepatoma cells critical in

maintaining viral replication (Blais et al., 2010).

Many other ABPs have been generated and validated in com-

plex proteomes, including but not limited to (1) 2-oxoglutarate-

dependent oxygenase probes that employ a hydroxyquinoline
1174 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
template coupled to a photoactivatable crosslinking group and

biotin handle (Rotili et al., 2011), (2) S-adenosylmethionine

(SAM)-dependent methyltransferase probes that consist of

S-adenosylhomocysteine analogs with amino linkers attached

to scaffolds containing photo-crosslinkers and a biotin handle

(Dalhoff et al., 2010), (3) a suite of bioorthogonal cytochrome

P450 ABPs against a wide cross-section of human P450s

(Wright and Cravatt, 2007; Wright et al., 2009), and (4) pargyline

and deprenyl-based bioorthogonal ABPs for monoamine oxi-

dase (Krysiak et al., 2012).

Bogyo and colleagues have been on the forefront of using

ABPP in depicting enzyme activities in cancer, generating

ABPs to track cysteine protease activity in cancer cell progres-

sion and proteosomal substrate specificity (Greenbaum et al.,

2000; Nazif and Bogyo, 2001). They have used quenched near-

infrared fluorescent ABP (qNIRF-ABP) to image cysteine prote-

ase activities in tumor xenografts in vivo in mice (Blum et al.,

2007) and have also developed a highly selective aza-peptidyl

asparadinyl epoxide qNIRF-ABP probe for legumain, a lyso-

somal cysteine protease upregulated inmultiple human cancers,

to depict tumors. Recently, they generated a caspase-directed

ABP to depict and quantify dexamethasone-induced apoptosis

in the thymus and Apomab-induced apoptosis in tumor xeno-

grafts in vivo in mice (Edgington et al., 2009).

ABPP platforms have also been extended to map the endog-

enous reactivity of the proteome with reactive electrophile-

based RBPs. Carroll and colleagues developed bioorthogonal

dimedone and sulfenome RBP probes that selectively react

with sulfenic acid cysteine modifications in the proteome and

used these probes to identify redox regulated pathways such

as the cysteine sulfenic acid-modified Gpx3 regulation of Yap1

in yeast, involved in regulating epidermal growth factor receptor

tyrosine kinase activity (Leonard et al., 2009; Paulsen and Car-

roll, 2009; Paulsen et al., 2012; Reddie et al., 2008; Seo and Car-

roll, 2011). Weerapana and colleagues used isoTOP-ABPP to

perform a massive quantitative proteomic profiling effort to

comprehensively profile hyperreactive cysteines in complex pro-

teomes, in which cells were first labeled with the cysteine-reac-

tive iodoacetamide-alkyne bioorthogonal probe. Proteomes

were then subjected to click chemistry with an isotopically-

labeled azide-linked cleavable biotin linker for enrichment and

release of cysteine-labeled peptides for subsequent analysis

by quantitative proteomics (Weerapana et al., 2010). The

authors uncovered a wide range of hyperreactive cysteines in

the proteome that were enriched in functional cysteines involved

in a wide range of activities, including nucleophilic and reductive

catalysis and sites of oxidative modification for both character-

ized and uncharacterized proteins across many different protein

classes, including some metabolic enzymes (Weerapana et al.,

2010). As demonstrated, isoTOP-ABPP is a broad and quantita-

tive approach capable of assessing the specific sites involved in

catalytic and regulatory function of large numbers of proteins

and metabolic enzymes.

As described above, ABPP has proven to be a powerful

technology in probing enzyme activities across a wide range of

enzyme classes and acrossmany physiological and cellular con-

texts, although like any approach, this technology is not without

its limitations. While many ABPs and RBPs have been devel-

oped by the chemical biology community, there are still many
d All rights reserved
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metabolic enzyme classes that cannot be assayed with

ABPP-basedmethods. Furthermore, whereas higher throughput

ABPP methods have been developed to screen large numbers

of compounds against one enzyme, the broad profiling of large

numbers of enzyme activities is still medium to low throughput

using gel-based and proteomic-based methods. These limita-

tions notwithstanding, as described here, ABPP is a versatile

platform can be used not only for target identification of enzymes

important in various diseases, but also for characterization of

unknown enzymes, for depicting enzyme activities, and even un-

covering hyperreactivity and functionality across the proteome.

Chemoprotomics for Developing Selective Small-
Molecule Inhibitors for Metabolic Enzymes
In addition to target discovery and imaging applications, ABPP

can also be used in a competitive mode to screen for enzyme in-

hibitors (Moellering and Cravatt, 2012). Inhibitor screening by

competitive ABPP exhibits several advantages over conven-

tional substrate assays. First, enzymes can be tested in native

proteomes without the need for recombinant expression or puri-

fication (Adibekian et al., 2011; Chang et al., 2011; Chiang et al.,

2006; Long et al., 2009), and second, inhibitors can be devel-

oped for uncharacterized enzymes without prior knowledge of

endogenous substrates (Adibekian et al., 2011; Bachovchin

et al., 2010; Chang et al., 2011; Chiang et al., 2006; Li et al.,

2007). Because inhibitors are tested against many enzymes

in parallel, inhibitor potency and selectivity can be simulta-

neously assessed, enabling subsequent medicinal chemistry

efforts to develop highly specific and effective enzyme inhibitors

(Chang et al., 2011; Long et al., 2009; Bachovchin et al., 2009,

2011; Adibekian et al., 2011). Thus, competitive ABPP provides

a universal assay for inhibitor discovery applicable to any

enzyme regardless of existing knowledge of its function as

long as there is a cognate ABP or RBP for the enzyme. Compet-

itive ABPP has emerged as a powerful approach for developing

potent and selective small-molecule inhibitors for both char-

acterized and uncharacterized enzymes, which have then

been used to inform the functions of metabolic enzymes in com-

plex systems. As described previously with standalone ABPP

approaches, competitive ABPP can be employed in a low-

throughput/high resolution mass spectrometry-based prote-

omics format with biotin-tagged activity-based probes using a

multidimensional protein identification technology (ABPP-Mud-

PIT), a medium-throughput gel-based format with fluorescent

activity-based probes (gel-based ABPP), or a high-throughput

screening format using fluorescence polarization with ABPs

against large compound libraries (fluopol-ABPP; Adibekian

et al., 2011; Bachovchin et al., 2009, 2010; Chang et al., 2011).

Competitive ABPP platforms have been remarkably success-

ful in generating small-molecule inhibitors of serine hydrolases

using the fluorophosphonate ABP. Chang and colleagues

developed the compound JW480, a highly selective, irrevers-

ible, in vivo efficacious, and orally bioavailable inhibitor of the

previously uncharacterized enzyme KIAA1363 that selectively

inhibited KIAA1363 activity in various tissues and in tumor xeno-

grafts, and impaired cancer cell migration and in vivo tumor

growth (Chang et al., 2011). Bachovchin and colleagues gener-

ated a library of >140 serine hydrolase inhibitors based on the

carbamate scaffold and tested all of these inhibitors against a
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library of >70 recombinantly expressed serine hydrolases in a

‘‘library versus library’’ screening effort, and successfully identi-

fied lead inhibitors for >40% of enzymes tested (Bachovchin

et al., 2010). Competitive ABPP platforms have also been used

to generate selective inhibitors for the serine hydrolases MAGL

and fatty acid amide hydrolase (FAAH), which degrade the endo-

cannabinoid signaling lipids 2-arachidonoylglycerol (2-AG) and

anandamide, respectively. MAGL inhibitors found through a

competitive ABPP screen of a structurally diverse carbamate

library and subsequent optimization led to the development of

the carbamate JZL184 as the first potent, selective, and in vivo

active MAGL inhibitor (Long et al., 2009). As described later in

this review, JZL184 has been used extensively to characterize

the biochemical functions of MAGL using metabolomics ap-

proaches, in the process revealing this enzyme as a therapeutic

target for cancer, inflammation and inflammatory diseases,

neurodegenerative diseases, anxiety, and pain. Ahn and col-

leagues have also used ABPP to generate the highly selective

and in vivo efficacious biaryl ether piperidine urea FAAH inhibitor

PF-3845. The authors also generated a bioorthogonal analog of

PF-3845 bearing an alkyne handle to show that PF3845-yne only

inhibited FAAH in vivo (Ahn et al., 2009).

Adibekian and colleagues used competitive ABPP-SILAC

platforms to show that the 1,2,3-triazole urea scaffold is ideal

for generating irreversible serine hydrolase inhibitors. The au-

thors generated a library of triazole urea inhibitors and optimized

the highly selective inhibitors AA74-1, AA39-2, and AA44-2 for

acyl peptide hydrolase, platelet activating factor acetylhydrolase

2, and uncharacterized hydrolase ABHD11, respectively (Adibe-

kian et al., 2011). Using this scaffold, Hsu and colleagues

generated the triazole urea inhibitors KT109 and KT172 for the

2-AG-synthesizing enzyme diacylglycerol lipase and confirmed

selectivity of these inhibitors in situ with ABPP-SILAC and in vivo

with ABPP-MudPIT (Hsu et al., 2012).

Screening large inhibitor libraries via high-throughput fluopol-

ABPP has led to identification of several small-molecule inhibi-

tors of metabolic enzymes. These include selective inhibitors

of anticancer targets protein methyl esterase 1, glutathione

transferase omega, and RBBP9, as well as an inhibitor for the

anti-inflammatory target protein arginine deaminase 4 (Bachov-

chin et al., 2009, 2011; Knuckley et al., 2010; Tsuboi et al., 2011).

As demonstrated above, competitive ABPP platforms are very

useful in developing inhibitors for metabolic enzymes. The ability

to assess inhibitor selectivity and target occupancy of inhibitors

in cells or even in vivo has been a particularly useful feature of this

approach toward providing highly specific chemical tools for

further biological discovery, leads for clinical development, and

biomarkers for inhibitor efficacy (Moellering and Cravatt, 2012).

Metabolomics to Annotate the Functions of
Uncharacterized Metabolic Enzymes
Chemoproteomic strategies such as ABPP have greatly

facilitated efforts to assess metabolic enzyme activities and

developing chemical tools to disrupt these activities in complex

biological systems. However, these strategies still need to be in-

tegrated with functional metabolomic approaches to decipher

the metabolites that are regulated by these enzymes and how

these metabolites and their associated metabolic pathways

are involved in (patho)physiology. The metabolome is generally
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1175



Figure 3. Targeted and Untargeted Metabolomic Profiling Platforms
Targeted metabolomic approaches oftentimes are performed by multiple reaction monitoring-based liquid chromatography-tandem mass spectrometry
methods. Untargeted metabolomic approaches are performed through collecting all mass spectra and using bioinformatics tools (e.g., XCMS) to identify,
integrate, and compare ions among comparison groups.
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considered a collection of small-molecule metabolites that

include nutrients and their biosynthetic intermediates to provide

biomass (nucleic acids andDNA/RNA, amino acids and proteins,

fatty acids, and membrane lipids) and energy for cell growth and

function. However, this view is rapidly expanding to encompass

diverse metabolite constituents that serve as intracellular and

extracellular signaling molecules influencing physiological pro-

cesses such as neurotransmission (e.g., acetylcholine, gluta-

mate, 2-AG, anandamide; Fisher and Wonnacott, 2012; Hassel

and Dingledine, 2012; Kohnz and Nomura, 2014), inflammation

(e.g., sphingosine-1-phosphate, prostaglandins; Wymann and

Schneiter, 2008), and cancer (e.g., eicosanoids and lysophos-

phatidic acid; Mills and Moolenaar, 2003; Wang and Dubois,

2010), as well as endogenous nuclear hormone receptor ligands

that influence transcriptional regulation (Evans andMangelsdorf,

2014), and metabolites that confer posttranslational and epige-

netic regulation onto the proteome and genome (e.g., UDP-

GlcNAc and glycosylation, acetyl-coA and acetylation; Wellen

and Thompson, 2012). The metabolome is the functional output

of enzymes that generate, degrade, or convert biomolecules.

Thus functional metabolomic strategies, which uncover metabo-

lite changes that occur upon disruption of a specific metabolic

enzyme, are essential in deciphering biochemical functions and

(patho)physiological roles of enzymes in complex living systems.

Compared to the genome and the proteome, the metabolome

presents unique challenges for global analysis due to the sig-

nificant physicochemical diversity in metabolite size, molecular

weight, hydrophobicity, chemical stability, charge, volatility,

abundance, and ionization inherent in biological samples.

Several types of technologies and methodologies have been

used in metabolomic profiling to attempt near global detection

and analysis. Nuclear magnetic resonance, gas chromatog-

raphy-mass spectrometry, and liquid chromatography-mass

spectrometry are the most common techniques used for metab-
1176 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
olomic profiling (Patti et al., 2012), and metabolomics analysis is

often performed using ‘‘targeted’’ or ‘‘untargeted’’ methods that

capture complementary information (Figure 3). Using targeted

metabolomic methods, a series of known metabolites are quan-

titatively measured, in which a mass spectrometer targets a list

of known metabolites by their mass-to-charge ratio (m/z) and/

or the transition of the ‘‘parent’’ m/z of metabolites to their

respective ms2 fragment ‘‘daughter’’ ions (known as multiple re-

action monitoring). Targeted metabolomics enables sensitive,

simultaneous quantification of hundreds of known metabolites

based on availability of standards, and is very useful in studying

defined metabolic pathways and quantifying specific, very low

abundance metabolites (Patti et al., 2012). However, targeted

metabolomic detection is restricted to quantifying known

metabolites for which there are existing standards. Untargeted

metabolomics can prove especially useful for uncovering the

function(s) of uncharacterized enzymes, when deciphering

unique and novel roles of previously characterized enzymes, or

identifying new metabolites. Untargeted metabolomic analyses

in which the mass spectrometer is set to scan a wide m/z range

and collect all mass spectra are used as a complementary

approach to targeted analyses to improve metabolome

coverage (Patti et al., 2012; Saghatelian and Cravatt, 2005;

Saghatelian et al., 2004b; Vinayavekhin et al., 2010). This large

amount of collected mass spectral data can then be analyzed

with bioinformatic platforms such as XCMS or MAVEN to iden-

tify, integrate, and compare all detectable ions to identify those

ions that are changed between comparison groups (Clasquin

et al., 2012; Patti et al., 2012; Smith et al., 2006; Tautenhahn

et al., 2012). This data can then be used to identify potentially

novel metabolites altered in abundance between groups using

metabolomic databases like METLIN, HMDB, and Lipid Maps

and traditional analytical chemistry methods (Fahy et al., 2007;

Nikolskiy et al., 2013; Smith et al., 2005; Wishart et al., 2013).
d All rights reserved
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Both targeted and untargeted functional metabolomic ap-

proaches have recently revealed the functions of previously

uncharacterized enzymes. Blankman and colleagues used

untargeted metabolomics to uncover the function of the previ-

ously uncharacterized enzyme a/b-hydrolase domain-contain-

ing 12 (ABHD12), a serine hydrolase mutationally inactivated

in patients with PHARC, as a lysophosphatidylserine (LPS)

hydrolase (Figure 4A; Blankman et al., 2013). Blankman and

colleagues showed that ABHD12-deficient mice show elevated

levels of the toll-like receptor agonist LPS, leading to neuroin-

flammation and motor and auditory defects reminiscent of

PHARC (Blankman et al., 2013).

Inhibitors developed through competitive ABPP platforms

have been used to interrogate the functions of uncharacterized

enzymes, which then led to insights into their pathophysiolog-

ical roles. Using untargeted metabolomics and the selective

KIAA1363 inhibitor AS115 developed by competitive ABPP

efforts, Chiang and colleagues discovered that KIAA1363 is a

2-acetyl-monoalkylglycerol (2-acetyl MAGE) hydrolase that gen-

erates monoalkylglycerol ether (MAGE) leading to the generation

of the oncogenic signaling lipid alkyl-lysophosphatidic acid,

which in turn fueled cancer cell pathogenicity and tumor growth

(Chiang et al., 2006).

Both targeted and untargeted metabolomics have been used

in conjunction with genetic manipulation to reveal the functions

of bacterial metabolic enzymes. Baran and colleagues used

the combined metabolomic platforms to characterize and vali-

date genes related to specific metabolite utilization in bacteria

by profiling libraries ofmutant strains inEscherichia coli andShe-

wanella oneidensis MR-1. Through this approach, the authors

identified genes with known functions as well as novel transport

proteins and enzymes required for utilization of tested metabo-

lites. Specifically, they uncovered a predicted ABC transporter

encoded by genes SO1043 and SO1044 required for citrulline

utilization and a predicted histidase encoded by the gene

SO3057 required for ergothioneine use by S. oneidensis (Baran

et al., 2013).

Metabolomics to Reveal Unique and Novel Roles for
Previously Characterized Enzymes
Whereas many ‘‘characterized’’ metabolic enzymes have puta-

tive biochemical functions, often these enzyme functions have

only been determined in vitro or may be described solely based

on sequence homology or by association with an enzyme family,

and may not have been validated in in vivo systems. Further-

more, enzymes may play alternate or additional roles or are

linked to different metabolic pathways depending on the tissue

or cell type, or in dysregulated and rewired disease states. Func-

tional metabolomics has proven critical in mapping rewired, re-

tasked, or novel functions of enzymes in tissue- or cell-specific

or disease-specific contexts.

De Carvalho and colleagues used an untargeted metabolomic

approach to describe the Mycobacterium tuberculosis enzyme

Rv1248c, which was characterized at the time as a thiamine

diphosphate-dependent a-ketoglutarate decarboxylase. Using

metabolomic approaches, the authors found that Rv1248c was

misannotated and that its actual function was to catalyze the

conjugation of a-ketoglutarate and glyoxylate to yield 2-hy-

droxy-3-oxoadipate, which decomposes to 5-hydroxylevulinate,
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possibly involved in glyoxylate detoxification, glutamine meta-

bolism, or heme biosynthesis (de Carvalho et al., 2010).

Targeted and untargeted metabolomics were also used to

show the tissue-specific and disease-specific roles of MAGL

in coordinating multiple lipid signaling pathways that underlie

inflammation, pain, mood, and cancer (Figure 4B). Competitive

ABPP was used to generate JZL184, the first selective MAGL in-

hibitor, subsequently used to show that MAGL blockade caused

large elevations in the levels of the endocannabinoid 2-AG

in mouse brain, leading to cannabinoid receptor type 1 (CB1)-

dependent antinociceptive, anxiolytic, and anti-inflammatory ef-

fects (Kinsey et al., 2009, 2010, 2011; Long et al., 2009; Sciolino

et al., 2011). Using both targeted and untargeted metabolomic

approaches, subsequent studies showed that MAGL blockade

in specific tissues such as brain, liver, and lung also decreased

arachidonic acid and arachidonic acid-derived pro-inflammatory

eicosanoids such as prostaglandins and thromboxanes. This

resulted in neuroprotective and hepatoprotective effects in

degenerative and inflammatory diseases through suppressing

inflammation, thereby linking anti-inflammatory endocannabi-

noid signaling to pro-inflammatory eicosanoid signaling through

MAGL (Long et al., 2009; Nomura et al., 2008a, 2008b, 2011a;

Schlosburg et al., 2010; Chen et al., 2012; Piro et al., 2012).

Metabolomics has also been fundamental in understanding

how cancer cells alter their metabolism to fuel their pathogenic

properties. In a very unique discovery of a neomorphic function

for a mutated enzyme, Dang and colleagues used untargeted

metabolomic profiling to show that a mutant form of the tricar-

boxylic acid cycle enzyme isocitrate dehydrogenase 1 (IDH1),

IDH1 R132H, found in multiple types of cancers, generated a

novel oncometabolite 2-hydroxyglutarate (2-HG) (Dang et al.,

2009), which in turn caused epigenetic changes that fuel cancer

progression (Xu et al., 2011).

Nomura and colleagues used untargeted metabolomic plat-

forms to find that MAGL plays a distinct role in regulating fatty

acid release for the generation of fatty acid-derived lysophos-

pholipids and eicosanoids that drive aggressive features in can-

cer (Nomura et al., 2010c, 2011b). In another example, Benjamin

et al. used targeted and untargeted metabolomic approaches to

show that inactivating the ether lipid-generating enzyme alkyl-

glycerone phosphate synthase (AGPS) in aggressive cancer

cells dramatically reduced structural and oncogenic signaling

ether lipid levels. AGPS inactivation also diverted the flux of

arachidonic acid away from other tumor-promoting signaling

lipids such as prostaglandins, and toward structural acylglycer-

ophospholipids, leading to impaired cancer pathogenicity and

tumorigenesis (Benjamin et al., 2013; Figure 4C).

Looking further at cancer metabolism, Locasale and Posse-

mato independently showed phosphoglycerate dehydrogenase

(PHGDH) is a critical metabolic node in cancer cells, diverting

glucose metabolism into serine and glycine metabolism

(Locasale et al., 2011; Possemato et al., 2011). Locasale and

colleagues used heteronuclear single quantum coherence

spectroscopy NMR and isotopic tracing using targeted liquid

chromatography-mass spectrometry-based metabolomics of
13C-glucose labeled cells to show significant 13C incorporation

into 3-phosphoserine and serine pathways through PHGDH

(Locasale et al., 2011). Using functional metabolomics, Locasale

and colleagues found that inactivating PHGDH in melanoma
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1177
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cancer cells lowered phosphoserine levels and caused an accu-

mulation in glycolytic intermediates (Locasale et al., 2011). In

breast cancer cells, Possemato and colleagues used functional

metabolomics to show that nearly half of a-ketoglutarate was

derived from the serine pathway and that PHGDH inactivation

in breast cancer cells reduced the levels of multiple tricarboxylic

acid cycle metabolites, leading to impaired cancer pathogenicity

(Possemato et al., 2011).

Metabolomics has also been useful in defining metabolic

drivers of viral infection. Grady and colleauges used an siRNA

screen to show that argininosuccinate synthase 1 (ASS1) knock-

down increased virus yield. They subsequently used meta-

bolomic profiling to show that ASS1 inactivation resulted in a

metabolic signature that closely resembled herpes simplex

virus-1 infection, in which levels of aspartate, carbamoyl-aspar-

tate, one of the first committed metabolites on the pathway to

nucleotide synthesis, and nucleotides and their precursors

were reduced (Grady et al., 2013).

Collectively, targeted and untargeted metabolomic platforms

can be used to functionally characterize not only the substrate/

product relationships of metabolic enzymes, but also the meta-

bolic networks that theseenzymescontrol in (patho)physiological
Chemistry & Biology 21, September 18, 2014 ª
settings. These techniques have proven

useful in discovering the mechanisms

throughwhich these enzymes control dis-

ease progression and in elucidating the

therapeutic potential ofmanipulating spe-

cific metabolic pathways.

Posttranslational and Epigenetic
Regulation of the Proteome and
Genome by Metabolic Pathways
Whereas small-molecule metabolites

have long been known to confer post-

translational and epigenetic modifica-

tions onto the proteome and genome,

these types of regulation have been

considered to be primarily regulated by

the enzymes directly involved in adding

or removing these modifications. These

metabolites, their modifications, and their

respective enzymes include acetyl-CoA

and acetylation/deacetylation by ace-

tyltransferases and deacetylases, SAM

and methylation/demethylation by meth-

yltransferases and demethylases, and

ATP and phosphorylation/dephosphory-
lation by kinases and phosphatases (Prabakaran et al., 2012).

However, recent studies have shown that the metabolic en-

zymes and metabolic fluxes that generate these cofactors may

play an important role in regulating the levels of posttranslational

and epigenetic modifications (Wellen and Thompson, 2012). This

realization brings forth the exciting prospect of controlling meta-

bolic, signaling, and transcriptional networks simultaneously

through directly manipulating metabolic pathways. Here, we

provide some recent examples of metabolite-driven protein

and gene regulation in controlling pathophysiological processes.

Chemoproteomic platforms can also be used to identify

metabolite-driven posttranslational modifications in the prote-

ome. Wang and colleagues used competitive isoTOP-ABPP

platforms to globally map the targets of 4-hydroxy-2-nonenal

(HNE), a common lipid product of lipid peroxidation, whereby

HNE was competed against iodoacetamide-alkyne labeling in

cells. The authors showed that a unique cysteine in ZAK kinase

was the most sensitive target to HNE, and suggested that ZAK

is a special node in MAPK signaling that is sensitive to oxidative

stress (Wang et al., 2014; Figure 5A).

Moellering and colleagues recently discovered a novel

posttranslational modification, 3-phosphoglyceryl-lysine (pgK),
2014 Elsevier Ltd All rights reserved 1179
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generated by nonenzymatic covalent lysine modifications

through the glycolytic intermediate 1,3-bisphosphoglycerate

(1,3-BPG), the product of glyceraldehyde 3-phosphate dehydro-

genase (Figure 5B). The authors showed that this modification

accumulated on several glycolytic enzymes in cells exposed to

high glucose, leading to inhibition of activity and redirection of

glycolytic intermediates to biosynthetic pathways that support

cancer cell pathogenicity (Moellering and Cravatt, 2013).

We described in the previous section how mutant IDH1 in

cancer cells generate the oncometabolite 2-HG that drives

cancer pathogenicity. Studies have shown that IDH1 mutations
1180 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
are correlated with hypermethylation at specific loci known as

the CpG island methylator phenotype in glioma and that mutant

IDH1 causes hypermethylation at many genetic loci (Figure 6A;

Turcan et al., 2012). Work by Xu and colleagues and Lu and

colleagues have since shown that 2-HG acts as a competitive

inhibitor of multiple a-KG-dependent dioxygenases, and that

IDH1 mutations can impair histone demethylation resulting

in a block to cell differentiation (Lu et al., 2012; Xu et al.,

2011). A mutation in IDH1 generates the novel oncometabolite

2-HG, which then confers large-scale epigenetic alterations

altering the expression of large numbers of genes, thus linking
d All rights reserved
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central carbon metabolism to gene regulation and cancer

pathogenicity.

Recent studies have also highlighted the importance of acetyl-

CoA levels in histone acetylation and transcriptional regulation.

Tu and colleagues used 2D gas chromatography-mass spec-

trometry-based metabolomic profiling to show changes in

acetyl-CoA levels periodic with yeast cell cycle phase, suggest-

ing that acetyl-coA levels may control temporal regulation of cell

cycle processes (Tu et al., 2007). Subsequently, Cai and col-

leagues showed that an increase in acetyl-CoA levels led directly

to the Gcn5p/SAGA-catalyzed acetylation of histones at genes

important for growth, thus promoting growth transcriptional

programming in yeast and serving as a metabolic rheostat

to initiate cell growth through acetylation of specific histones

(Cai and Tu, 2011). Similarly, Wellen and colleagues showed

in mammalian cells that ATP-citrate lyase (ACL) influences cell

growth and differentiation through controlling acetyl-CoA levels,

driving nutrient-responsive histone acetylation and selective

gene expression prompting growth factor-induced increases in

nutrient metabolism and reprogramming of intracellular meta-

bolism to utilize glucose for ATP production andmacromolecular

synthesis (Figure 6B; Wellen et al., 2009).

In another example, Ulanovskaya showed that N-methyltrans-

ferase (NNMT) can also influence the histone methylation and

epigenetic regulation that drives cancer aggressiveness through

methylating nicotinamide to generate N-methylnicotinamide

(Figure 6C). This leads to reduced SAM levels, thus diverting

SAM methylation away from histone methylation. The authors

showed that NNMT overexpression leads to upregulation

of many tumor-promoting gene products including SNAI2,

TGFB2, and CNTN1, via the altered epigenetic landscape of

cancer cells (Ulanovskaya et al., 2013). Interestingly, Kraus and

colleagues showed that NNMT also alters epigenetic and meta-

bolic landscapes in white adipose tissue (Kraus et al., 2014).

Through these mechanisms, the metabolic enzyme NNMT regu-

lates metabolism and epigenetic regulation to drive both cancer

and obesity.

Future Challenges
The resurgence of interest in metabolism has spurred a rapid

pace of advancements in the decade following the completion

of the human genome project, providing insight into fundamental

biochemistry as well as revealingmechanistic details of diseases

with metabolic bases such as cancer, infection, and obesity and

diabetes. Development of innovative chemoproteomic and me-

tabolomic platforms has enabled the characterization and

description of enzyme function in complex living systems, the

metabolic pathways that these enzymes regulate, and even

metabolic pathway-driven posttranslational and epigenetic

regulation of the proteome and genome. Although these technol-

ogies have revealed previously uncharacterized aspects of

metabolism and clarified existing ones, the majority of the meta-

bolic map still remains obscured. Higher throughput technolo-

gies for metabolomics and improved genetic or pharmacological

manipulation of enzyme activities in complex systems are

required to decode the function of the currently concealedmeta-

bolic genome.

Furthermore, major challenges still exist in elucidating enzyme

function. While we have provided successful examples of char-
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acterizing enzymes in complex living systems, there are at least

an equal number of examples from personal experience where

inactivating or overexpressing an enzyme causes no detectable

metabolomic changes upon metabolomic profiling. There are

many reasons that may account for this apparent metabolomic

intransigence including technical and methodological limitations

such as (1) extraction procedures and LC/MS chromatography

conditions that confer metabolite instability; (2) the metabolites

regulated by the enzyme are too low abundance or are otherwise

undetectable by traditional metabolomicmethods (e.g., does not

ionize well, not volatile, or does not have a derivatization method

that improves detection); and (3) the metabolite change may be

localized to a specific cell type in a tissue or a specific intracel-

lular compartment and the metabolite changes are masked by

the remainder of the extracted metabolome. Elucidating enzyme

function is also complicated by (4) mischaracterized enzymes

that may be described as acting on a specific class of small-

molecule metabolites but may actually be operating on alterna-

tive metabolite classes or even protein, peptide, or genomic

substrates that may not be amenable to analysis by metabolo-

mic platforms; and (5) enzymes that may be acting on a yet

unknown posttranslational protein modification.

The information quality challenge of mischaracterized en-

zymes is likely a larger problem than currently appreciated,

as many enzymes are named based on sequence homology

to other proteins, but may not share similar substrate speci-

ficity. Metabolomic approaches are not amenable for substrate

profiling of larger substrates such as protein, peptides, and post-

translational modifications. Nonetheless, innovative protease

and peptidase substrate profilingmethods have been developed

to functionally define metabolic enzymes that may have protein

and peptide substrates, including subtiligase-mediated degra-

domic strategies, protein topography and migration analysis

platform, and peptidomic profiling methods (Dix et al., 2008,

2012; Kim et al., 2012; Mahrus et al., 2008; Nolte et al., 2009;

Tinoco et al., 2010). Although there are innovative proteomic

methods for mapping well-characterized posttranslational

modifications such as phosphorylation and acetylation by phos-

phoproteomic or acetylomic methods (Choudhary and Mann,

2010), unfortunately, there are currently few to no methods

for characterizing the functions of enzymes that act on unknown

posttranslational modifications, because there are currently no

proteomic strategies for globally identifying novel or unknown

protein modifications across the proteome.

What is quite clear is that achieving the goal of large-scale

functional characterization and description of metabolic en-

zymes in complex physiological and disease systemswill require

integrating multidimensional metabolic mapping technologies.

This will likely include the chemoproteomic and functional me-

tabolomic approaches described here in addition to newly devel-

oped chemical strategies that will expand our access into protein

function, our ability to generate pharmacological tools, and our

capacity to accelerate throughput of these analyses. These ad-

vances, coupled with increased resolution and depth of analyt-

ical platforms will support our drive to interrogate the unexplored

aspects of the metabolome, proteome, and peptidome. The

complex interplay between enzyme function, metabolomic land-

scape, posttranslational and epigenetic regulation, and metabo-

lite-protein-signaling networks described in this review presents
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1181
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a great challenge for scientists, but also offers exciting opportu-

nities to understand complex biology and treat disease by un-

derstanding fundamental metabolic function.
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