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ABSTRACT Understanding the structure, functions, activities and dynamics of microbial communities in natural environments
is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies
have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-
throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and
functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and
“closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of
environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high
and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complemen-
tary high-throughput molecular technologies to address important ecological questions.

Microorganisms inhabit almost every imaginable environ-
ment in the biosphere, play integral and unique roles in

ecosystems, and are involved in the biogeochemical cycling of
essential elements, such as carbon, oxygen, nitrogen, sulfur, phos-
phorus, and various metals. Their structure, function, interaction,
and dynamics are critical to our existence, yet their detection,
identification, characterization, and quantification pose several
great challenges. First, microbial communities can be extremely
diverse, and the majority of microorganisms in natural environ-
ments have not yet been cultivated (1, 2). Second, in any ecosys-
tem, various microorganisms interact with each other to form
complicated networks whose behavior is hard to predict (3, 4).
Establishing mechanistic linkages between microbial diversity and
ecosystem functioning adds an additional challenge to under-
standing the interactions and activities of complex microbial
communities (5, 6). Effective high-throughput technologies for
analyzing microbial community structure and functions are crit-
ical for advancing this mechanistic understanding.

Sequencing and phylogenetic analysis of 16S rRNA genes pro-
vided the foundation for modern study of microbial communi-
ties. PCR-based 16S rRNA cloning analysis has driven the explo-
sion of information about community memberships and vastly
expanded the known diversity of microbial life (7). PCR-based
analyses of 16S rRNA genes have three major limitations: (i) PCR
limits the information obtained to the sequence between the
primers, thereby disregarding functional information; (ii) PCR-
based analysis is only somewhat quantitative, with most measure-
ments providing only relative abundance information; and (iii)
PCR primer mismatches may result in some lineages being missed
entirely (8). All three challenges have been addressed by the devel-
opment of metagenomic analyses involving direct sequencing or
screening of unamplified environmental DNA (9–12). These
methods constitute critical “open formats,” which do not require
prior knowledge of the community, thereby enabling unprece-
dented discovery of new taxa and genes and associations between
them.

Analysis of cloned DNA has largely been replaced by next-

generation sequencing of DNA extracted from environmental
sources, which has transformed the field of microbial ecology by
increasing the speed and throughput of DNA sequencing by or-
ders of magnitude. Now the metagenomic databases are packed
with high-quality sequence information from diverse habitats
across the globe, revolutionizing molecular analyses of biological
systems (13, 14) and facilitating research on questions that for-
merly could not be approached. Although functional metag-
enomics, in which clones containing metagenomic DNA are
screened for expressed activities, holds great promise to shape
ecological theory and understanding, it has lagged behind shotgun
sequencing because of the comparatively slow advances in screen-
ing technology. Ecological insights from the massive data sets gen-
erated by high-throughput sequencing (open formats) have been
facilitated by sophisticated computational methods and by
closed-format methods, such as microarrays, which can be used to
rapidly query taxa, genes, or transcripts over space and time in
complex communities.

High-throughput sequencing and microarray technologies
have been applied to diverse communities. The plethora of re-
search using these methods has stimulated several excellent re-
views (15–17), particularly as applied to the human microbiome
(18–20). Our intent here is to complement previous reviews by
focusing primarily on DNA-based metagenomic technologies ap-
plied to complex environmental communities, such as those
found in soils.
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OVERVIEW OF OPEN AND CLOSED MOLECULAR DETECTION
APPROACHES

Since 1990, various molecular methods capable of tracking one to
hundreds of biomarkers have been widely used to analyze micro-
bial community structure, such as PCR amplification-based gene
cloning, sequencing of 16S rRNA genes (21) and functional genes
(22), amplified ribosomal DNA restriction analysis (23), denatur-
ing gradient gel electrophoresis (24), terminal restriction frag-
ment length polymorphism (25), phospholipid fatty acid analysis
(26), and BioLog EcoPlates for measuring carbon and nitrogen
metabolisms (27). Especially in the last decade, high-throughput
molecular technologies capable of tracking multiple thousands of
biomarkers have been developed for characterizing microbial
communities, including high-throughput DNA/RNA sequencing
(18, 28–31), PhyloChip (32), GeoChip (33), mass spectrometry-
based proteomics for community analysis (34), and metabolite
analysis (35).

We can group high-throughput molecular microbial detection
technologies into two major categories: open and closed formats

(16, 17). “Open format” refers to technologies whose potential
experimental results cannot be anticipated prior to performing
the analysis, and thus, the experimental outcome is considered
open. For instance, when using sequencing to analyze a microbial
community, we will not know what types of sequences will be
obtained prior to sequencing. The main characteristics of technol-
ogies of this type are that they typically do not require a priori
sequence information from the community of interest (16, 17)
and, overall, they enable discovery of new genes, pathways, and
taxa (Table 1). This category includes a variety of molecular tech-
niques, such as high-throughput sequencing technologies, screen-
ing for functional expression, fingerprinting methods, and mass
spectrometry-based proteomic and metabolomic approaches.

“Closed format” refers to the detection technologies whose
range of potential experimental results is defined prior to per-
forming the analysis, and thus, the experimental outcome is con-
sidered closed. For example, when a functional gene array con-
taining 10,000 probes is used for analyzing a microbial
community, the experimental results from this sample cannot go

TABLE 1 Key differences among open and closed high-throughput platforms for microbial community analysisa

Step or
parameter

Characteristic or
consideration

Description of characteristic or consideration in indicated type of analysisb

Comments

Open format Closed format

TGS SMS MTS FGAs PGAs

Sample
preparation
and
analysis

Sample/target
preparation

Complicated Simple Very
complicated

Simple Simple DNA/RNA quality is important
for all approaches

Analysis of
multiplex
samples per assay

Large
potential

Medium
potential

Medium
potential

Low (only one
or two)

Low (only one
or two)

FGAs and PGAs use 1 or 2 dyes
for labeling, and it is difficult
to multiplex samples in a
single assay

PCR amplification
or whole-
genome analysis

Yes No No No/yes Yes/no Amplification introduces
major problems for
quantification

Potential uneven
hybridization

NA NA NA Yes Yes Signal normalization is needed
within and between arrays to
correct signal differences
due to systematic errors

Data
processing
and
analysis

Raw data
processing

Relatively
easy

Difficult Difficult Easy Easy A major challenge for SMS and
MTS with large raw datasets

Phylogeny Yes Some Some No/yes Yes GeoChip uses gyrB for
phylogeny

Taxonomic
resolution

Strain,
species,
genus

Strain, species Strain, species Strain, species Genus, family It depends on molecular
markers with high resolution
for functional genes

Functional features No/yes Yes Yes Yes No TGS can analyze DNA and
RNA for functional genes

Signal threshold Yes NA NA Yes Yes Both PGAs and FGAs require a
threshold to call positive
signals, which is more or less
arbitrary. Thus, some
ambiguity exists for positive
or negative spots.

Requires a priori
knowledge

No/yes No No Yes Yes Closed-format technologies are
designed based on known
sequences

Analysis of �
diversity

Very good Good Very poor Fair Fair Here, � diversity estimation is
based on a single gene

Data comparison
across samples

Moderate Difficult Difficult Easy Easy Random or undersampling is a
major issue for open-format
approaches

(Continued on following page)
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TABLE 1 (Continued)

Step or
parameter

Characteristic or
consideration

Description of characteristic or consideration in indicated type of analysisb

Comments

Open format Closed format

TGS SMS MTS FGAs PGAs

Performance Coverage/breadth
(no. of different
genes detected)

Very low High High High Very low TGS can analyze phylogenetic
or functional genes

Sampling depth
(no. of sequences
or OTUs per
gene)

Very high Low/medium Low/medium Medium High The sampling depth for closed-
format approaches depends
on the number of probes
used

Detection of rare
species/genes

Medium Difficult Difficult Easy Easy Easy for closed format as long
as the appropriate probes are
present

Quantification Low Not known Not known High Low/medium Not rigorously tested for SMS
and MTS; for PhyloChip, if
RNA is used instead of DNA
(no PCR step),
quantification is high

Susceptibility to the
artifacts
associated with
random
sampling process

Medium High High Low Medium/low A major problem for
sequencing approaches; PCR
amplification may be
involved in PhyloChip

Potential discovery
of novel
genes/species

Yes Yes Yes No No

Results skewed by
dominant
populations

Yes Yes Yes No No

Sensitivity to (host)
DNA/RNA
contamination

No/yes Yes Yes No No Difficult to remove host DNA/
RNA contamination

Applicability
and cost

Most promising
applications

In-depth
studies of
microbial
diversity
or specific
functional
groups
and
discovery
of novel
genes

Surveys of
microbial
genetic
diversity of
unknown
communities
and
discovery of
novel genes

Surveys of
functional
activity of
unknown
microbial
communities
and
discovery of
novel genes

Comparisons
of functional
diversity and
structure of
microbial
communities
across many
samples

Comparisons
of taxonomic
or
phylogenetic
diversity and
structure of
microbial
communities
across many
samples

The choice of technology
mainly depends on the
biological questions and
hypotheses to be addressed

Relative cost per
assay

Medium High High Low Low It is challenging to make
general statements of cost
because they depend on
technology platforms, depth
of analysis, and approaches
used for processing and
analyzing data

Cost per sample ($) 30–150 1200–4000 1500–4500 150–800 150–1000 This is only based on the cost
of materials for target gene
amplicon preparations and
sequencing.

Cost for
bioinformatic
analysis

Medium High High Low Low

a Since various technologies have different features, it is difficult to make straightforward, point-by-point direct comparison. Thus, our attempt is to highlight the major differences
of various technologies in a general sense. We attempt to focus on the issues important to microbial ecology within the context of environmental applications and complex
microbial communities like those in soil rather than list the differences of various technologies in a comprehensive manner.
b TGS, target gene (e.g., 16S rRNA, amoA, nifH) sequencing; SMS, shotgun metagenome sequencing; MTS, metatranscriptome sequencing; FGAs, functional gene arrays: the listed
analysis is mostly based on GeoChip; PGAs, phylogenetic gene arrays: the listed analysis is mostly based on PhyloChip; NA, not applicable.
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beyond the detection capability of the probes (10,000) fabricated
on the array. The main features of technologies of this type are that
they require a priori sequence information (16, 17) and they do
not provide new molecular information because all molecules
used for designing the querying devices are known. DNA arrays
(32, 33), protein arrays (36), carbohydrate arrays (37), phenotype
arrays (38), and BioLog EcoPlates (27), as well as quantitative
PCR, are all considered closed-format technologies.

Open- and closed-format technologies typically differ in sam-
ple preparation and quality control, data processing and analysis,
performance, and application (Table 1), and each presents advan-
tages and limitations. In the following discussion, we compare
features important to meaningful applications of each platform by
giving special consideration to their usefulness in analyzing com-
plex microbial communities like those in soils. Since next-
generation sequencing and microarrays are the best and most
widely used representatives of open- and closed-format technol-
ogies, respectively, our comparison and discussion are primarily
focused on these technologies.

SEQUENCING-BASED HIGH-THROUGHPUT MOLECULAR
TECHNOLOGIES FOR MICROBIAL COMMUNITY ANALYSIS.
Sequencing technologies and applications. Several high-
throughput sequencing platforms have been developed and are
widely used, including the Illumina (e.g., HiSeq, MiSeq), Roche
454 GS FLX�, SOLiD 5500 series, and Ion Torrent/Ion Proton
platforms. The advantages and limitations of these platforms are
detailed elsewhere (18, 29, 30, 39–42). Currently, the majority of
microbial ecology studies apply high-throughput sequencing by
focusing on either targeted gene sequencing with phylogenetic
(e.g., 16S rRNA) (29, 43) or functional (e.g., amoA, nifH) (44, 45)
gene targets or on shotgun metagenome sequencing (Fig. 1a). For
targeted gene sequencing, community DNA is extracted from en-
vironmental samples (e.g., samples from soils, sediments, water,
bioreactors, or humans) using various extraction and purification
methods (46, 47). After high-quality DNA is obtained, targeted
genes can be amplified with conserved primers. Each set of prim-
ers is generally barcoded with short oligonucleotide tags (6- to
12-mer), as well as sequencing adapters, so that multiple samples
can be pooled and sequenced simultaneously (29, 43). Then, after
nontarget DNA fragments are removed by gel electrophoresis, tar-
get DNA is quantified, sequenced, and analyzed using bioinfor-
matic approaches, such as operational taxonomic unit (OTU) as-
signment, sequence assembly, phylogeny, and annotation
(Fig. 1a) (41).

Although targeted gene sequencing is a powerful tool for pro-
viding information on specific genes within a microbial commu-
nity, its suitability for analyzing the whole genetic and functional
diversity of communities is limited (18). To query broader char-
acteristics and identify novel genes, shotgun metagenome se-
quencing has been widely used (10, 28, 48–50). Briefly, commu-
nity DNA is randomly sheared using various methods, including
nebulization, endonucleases, or sonication (Fig. 1a) (40). The
sheared fragments are end repaired prior to ligation to platform-
specific adaptors, which serve as the priming sites for template
amplification (40). A transposon-based approach for simultane-
ous fragmentation and tagging has also become available (40).
Subsequent sequencing produces vast amounts of short reads,
which can be assembled and annotated for functional character-
ization (41, 51). The shotgun metagenomic sequencing approach

provides community-level information in complex environments
with thousands to millions of different archaeal, bacterial, and
eukaryotic species (52, 53), such as soil (49), ocean (10, 28),
groundwater (54), cow rumen (50), and human microbiome (48),
although short read sequences from complex communities can-
not always be assembled and only a fraction may be useful for
functional or phylogenetic analyses.

Targeted and shotgun sequencing of DNA provide snapshots
of the gene content and genetic diversity of microbial communi-
ties but cannot distinguish between expressed and nonexpressed
genes in a given environment. In contrast, metatranscriptomic
sequencing (i.e., metatranscriptomics) involves random sequenc-
ing of expressed microbial community RNA (Fig. 1a) (31, 55–57).
Typically, total RNA extracted from microbial communities is
dominated by rRNA, which must be removed to obtain high levels
of mRNA transcripts (55, 58). Then, the remaining RNAs are re-
verse transcribed into cDNAs, ligated to adapters, and sequenced
(Fig. 1a) (55, 58). Metatranscriptomic studies have provided in-
sight into microbial community functions and activities from di-
verse habitats, including soil (59), sediment (60), seawater (31,
57), gut microbiomes (61, 62), and activated sludge (63). How-
ever, major challenges include the inherent lability of mRNA, re-
quiring proper nucleic acid stabilization and storage procedures
to obtain sufficient quantities of high-quality mRNA. Further-
more, mRNA is still one or more steps away from actualized mi-
crobial community functions. Therefore, the further development
of proteomics and metabolomics is important to understand mi-
crobial community functions in the environment.

Key features of sequencing-based open-format detection
technologies. One of the most appealing features of the
sequencing-based open-format approaches is that they are ideal
for novel discovery (Table 1). Many new genes, phylotypes, regu-
lators, and/or pathways have been discovered using shotgun met-
agenome sequencing (48–50, 64). For example, in cow rumen
samples, 15 uncultured microbial genomes involved in biomass
decomposition were reconstructed along with 27,755 putative
carbohydrate-active genes, dozens of which were demonstrated to
exhibit carbohydrate-degrading activity despite a �55% average
amino acid similarity to known proteins (50). Based on mate-
paired short-read oceanic metagenomes, the genome of an uncul-
tured member of a novel class of marine photoheterotrophic Eu-
ryarchaeota was reconstructed (65). Sequence analyses of this
genome also suggested that proteorhodopsin (28, 66, 67) appears
to be of euryarchaeal origin.

Metatranscriptomics has also provided new insights into mi-
crobial community activities and functions, as well as discovery of
novel genes and regulatory elements. For example, the first meta-
transcriptomic analysis of seawater communities demonstrated
that this technique is capable of detecting novel gene- and taxon-
specific expression patterns and led to the discovery of novel gene
categories undetected in previous DNA-based surveys (31). Sub-
sequently, Shi et al. employed metatranscriptomics to discover
well known small RNAs and previously unrecognized putative
small RNAs in the ocean’s water column (57). More recently, Ha-
roon et al. (68) used a combination of metagenomics and meta-
transcriptomics to demonstrate a novel archaeal pathway for an-
aerobic oxidation of methane coupled with nitrate reduction in an
anaerobic bioreactor.

Another distinguishing characteristic of the sequencing-based
open-format approaches is in the assessment of � and � diversity.
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FIG 1 Key steps of high-throughput metaomic technologies for microbial community analysis. (a) Sequencing-based open-format technologies. Extracted
DNA/RNA samples are prepared for sequencing by target gene sequencing (TGS), shotgun metagenome sequencing (SMS), and/or metatranscriptome sequenc-
ing (MTS). RT, reverse transcription. (b) Data processing and analysis. Both sequencing- and microarray-based data are processed and then statistically analyzed
to address specific microbial ecology questions related to community diversity, composition, structure, function, and network, as well as their linkages with
environmental factors. (c) Array-based closed-format technologies. For the GeoChip and PhyloChip, extracted DNA is directly labeled and hybridized, while
RNA is first reverse transcribed (RT) to cDNA. DNA and RNA can be amplified by whole-community genome amplification (WCGA) or by whole-community
RNA amplification (WCRA), respectively, when there is not enough mass for direct hybridization, but this compromises quantification. Images from both arrays
are digitized for further data processing and statistical analysis.
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While � diversity is the diversity within a particular area or eco-
system, which is usually expressed as the number of taxa and
abundance of each taxon within a community, � diversity refers to
the overall total diversity of taxa/genes for the different ecosystems
within a region. Since new genes and taxa can be detected by
sequencing-based open-format technologies, deep sequencing of
phylogenetically informative genes (e.g., 16S rRNA) or functional
genes (e.g., nifH, amoA) is more suitable for estimating � and �
diversity of microbial communities at the whole-community level
or functional-population level. With current high-throughput
technologies, it is possible to recover substantial portions of the
microbial diversity in complex communities, even if only a few
samples are analyzed. For instance, deep pyrosequencing analysis
of amoA gene fragments in soil communities identified novel
amoA sequences and previously undiscovered phylogenetic lin-
eages (44, 45). In addition, many samples can be multiplexed for
analysis in a single assay by targeted gene sequencing (29), and so,
the experimental cost per single assay or per sample can be very
low for this technique (Table 1).

There are distinct differences between targeted and shotgun
metagenome sequencing approaches in terms of sample prepara-
tion, sequence output, and data analysis (Fig. 1a), and some of
these differences are particularly important for microbial ecology
research (Table 1). Targeted sequencing can provide greater depth
of coverage for specific gene(s) of interest (e.g., nifH), while shot-
gun metagenome sequencing captures information about the
community as a whole, as well as divergent homologs not cap-
tured by the primers employed.

Functional metagenomics can be treated as another open-
format approach that does not presuppose or require sequence
information, providing the opportunity for novel discovery and
representing a powerful complement to shotgun sequencing. This
approach involves screening cloned DNA for expressed functional
activity in a surrogate host cell (12, 69, 70). Given that the majority
of genes in most metagenomic databases do not have homologs
with biochemically characterized functions, the opportunity for
discovery in the metagenomic sequence space is vast. Although
this approach has been used to successfully discover new biosyn-
thetic enzymes (71), degradative enzymes (11, 72), and antibiotics
(73, 74), active clones are typically identified at low frequency
(typically 1 clone in 10,000 to 100,000 is active). Selective screen-
ing, e.g., using antibiotic resistance, can facilitate screening librar-
ies containing 107 or more clones. Functional metagenomic stud-
ies of antibiotic resistance in soil (70, 75, 76), water (77), and
insect, bird, pig, cow, and human microbiomes (78–80) have
yielded a new understanding of the genes encoding antibiotic re-
sistance in natural and managed environments and provide the
basis for comparing frequencies of antibiotic resistance among
habitats.

Challenges and limitations associated with open-format
techniques. The open-format techniques described above each
have their challenges. Some of the major technical challenges for
targeted gene sequencing are bias caused by PCR amplification
(81–84), sequencing errors, and chimeric sequences (83, 85, 86).
In one study, based on 90 identical mock community samples, the
average error rate in 16S rRNA pyrotag sequences was 0.6%, and
the chimera rate was 8% (83). Sequencing errors have been re-
duced 30-fold (from 0.6 to 0.02%) by the use of effective sequence
analysis pipelines (83, 86). Recently, low-error amplicon sequenc-
ing approaches have been developed for human and plant micro-

biome studies (87, 88). Although the sequencing errors and chi-
mera rates are less problematic for analyses based on assembled
sequences, due to sequence overlap and redundancy, they are
challenging in studies based on individual sequence reads (83).
Sequence errors and chimeras can generate numerous spurious
OTUs, which can inflate community diversity estimates by as
much as 2 orders of magnitude (16, 82, 86). There is an intense
debate regarding how much of the “rare biosphere” is due to se-
quencing artifacts (43, 82, 83). Thus, great caution and attention
to denoising the data are needed when using high-throughput
sequencing technologies for estimating microbial community di-
versity.

Another technical challenge for amplicon-based sequencing
approaches can be low reproducibility (84, 85, 89–93, 163–165)
and poor quantitation (89) due to the artifacts associated with
inadequate random sampling (89, 94, 95), amplification biases
(82, 83), and/or sequencing errors (83). For example, the subset of
16S molecules that are amplified and the subset of tagged ampli-
fied fragments that are attached to the surface of the flow cell (e.g.,
Illumina) or allocated to beads (e.g., 454) for sequencing is totally
random and follows a Poisson random sampling distribution
(95). How such artifacts associated with inadequate molecular-
level sampling can lead to low technical reproducibility was de-
scribed with an analogy to reading random words in a book (96)
and explicitly demonstrated by recent mathematical modeling
and simulations (95). To better visualize the potential differential
effects of inadequate random sampling on open- and closed-
format detection, it is useful to consider a hypothetical commu-
nity. We assume that such a microbial community has 50 expo-
nentially distributed taxa with 5,000 individuals (or 16S rRNA
molecules) (Fig. 2a), and the community is sampled twice with 1%
effort (i.e., 50 individuals) as technical replicates (Fig. 2b). Due to
the molecular-level random sampling artifacts generated by insuf-
ficient sequences to represent all taxa, the taxon membership and
abundance distribution are quite different between these two
samples even though they are from the same community (Fig. 2b).
Based on mathematical simulation, the overlap between these two
samples is approximately 50% (Fig. 2d), which is consistent with
experimental observations (84, 85, 89–93). However, as the sam-
pling effort increases, the overlap between samples increases,
achieving 95% overlap between two samples with ~20% of the
community sampled. If all individuals are effectively sampled,
erasing all the random sampling artifacts, 100% overlap is theo-
retically expected. For one real soil microbial community, on av-
erage, more than 60,000 16S rRNA sequences per sample were
needed to achieve 90% OTU overlap among three technical rep-
licates (95). Due to artifacts associated with inadequate random
sampling, PCR amplification biases, chimeras, and/or sequencing
errors, amplicon-based target sequencing is not considered quan-
titative (85, 89). This is consistent with the results of previous
pyrotag sequencing studies (81) and with a general consensus that
conventional PCR amplification of the template can introduce
significant biases and artifacts (97).

Targeted sequencing of functional genes can provide impor-
tant functional gene information from microbial communities
(45, 98); however, there are several challenges associated with this
approach. First, widespread lack of sequence conservation across
functionally homologous genes can make PCR primer design dif-
ficult, leading to lack of detection of relevant functional genes in
the environment. Second, even though fairly conserved primers
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can be designed for some functional genes of interest (e.g., amoA,
nifH, nirS, nirK), the success of amplification is habitat/ecosystem
dependent, most likely due to variations in the quality of extracted
DNA, community complexity, sequence divergence, and target
gene abundance. As a result, comparative studies can be compro-
mised or impossible (99). In addition, preparing high-quality li-
braries of amplified PCR products for various functional genes
from multiple samples is often difficult. Nonspecific amplification
requires the tedious and time-consuming step of additional gel
purification of PCR products prior to sequencing, which could
substantially slow down the sequencing process as a whole.

Shotgun metagenomic sequencing avoids many of the biases
encountered in amplicon sequencing because it does not require
amplification prior to sequencing. While it often fails to provide
sufficient sequence depth to assemble and model the genomes of
individual species (41, 100), especially in complex microbial com-
munities like those found in soils, whole-genome recovery from
ever more complex communities is now possible (50, 64, 101).
Another obstacle to adequate sequence coverage is contaminant

DNA, particularly in host-associated microbiome studies, where
sequence data may be predominantly from the host (41, 102).
Sequence-based open-format approaches can also be impaired by
dominant populations in the sample, which may be excessively
oversampled. In metatranscriptomic studies, this issue can be
compounded by high rRNA abundance (55).

Data analysis can be challenging for the open-format sequenc-
ing technologies, particularly shotgun sequencing data, as the as-
sembly and analysis of large sequencing data sets are computa-
tionally demanding and often require specialized computing
hardware (50, 51, 64). Many genome-oriented analyses of interest
are still impractical with short reads alone (102). Also, although
many studies are focused on single-read-based analysis, statistical
analysis of large short read datasets is time consuming and some-
times only a fraction of reads are usable for biological inference
(103), depending on the length of the reads and the availability of
representative reference genomes. With frequent changes in tech-
nology, there may be little consensus on appropriate procedures
for quality filtering and statistical validation. However, with re-

FIG 2 Illustration of random sampling processes and their impacts on the analysis of microbial communities using open- and closed-format metagenomic
technologies. (a) A theoretical community contains 50 taxa with 5,000 individuals and follows exponential distribution, �e��x (� � 0.01 in this case). The taxa
are ranked based on their abundance. Two technical replicates of this community are taken for analysis (sample I and sample II). Also, assume that a microarray
is constructed, covering about 50% of the taxa, as indicated by asterisks (*). (b) For sequencing, 1% sampling effort is performed. Overlapping taxa detected in
the two samples are indicated by carets (^). (c) The community DNA is directly labeled and hybridized with the microarrays. Because some populations are below
the detection limit, only certain portions are detected. Overlapping taxa detected in the two samples are also indicated by carets (^). In both cases (b and c),
similar numbers of taxa were detected. (d and e) Jaccard and Bray-Curtis overlaps for the open- and closed-format technologies.
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cent rapid advances in both hardware and software for data anal-
ysis, plus an ever-growing genome database, sequence data anal-
ysis is constantly improving. In addition, for MiSeq-based target
gene sequencing data, considerable variations (up to 10-fold) of
the estimated OTU numbers can be obtained from the same data
set with different computational software tools (e.g., UCLUST
versus UPARSE) (86), which presents a challenge for microbial
diversity assessments; however, an increasing number of con-
trolled benchmarking experiments are addressing these issues.

The challenges of functional metagenomics are largely associ-
ated with barriers to heterologous gene expression. Transcription
and translation machinery of the surrogate host must recognize
cues in the foreign DNA, and authentic posttranslational modifi-
cation, protein secretion, and/or availability of precursors for syn-
thesis of active small molecules may not be sufficiently coordi-
nated to enable detection of the active product (104, 105). These
challenges have been addressed using phylogenetically diverse
hosts (106) and promoters tailored to the host species (107, 108).
Functional metagenomics is also laborious and time consuming,
providing deep information about a small collection of clones that
is in sharp contrast with the expansive views provided by high-
throughput sequencing or microarrays. Yet the functional analysis
of novel gene products that lack sequence similarity to genes of
known function is necessary to illuminate the contents of the vast
collection of genes with no known functions that are now in met-
agenomic databases.

CLOSED-FORMAT MICROARRAY-BASED HIGH-THROUGHPUT
DETECTION APPROACHES FOR MICROBIAL COMMUNITY
ANALYSIS
Array-based detection technologies. Various types of DNA mi-
croarrays have been developed for microbial detection and com-
munity analyses (109), including phylogenetic and functional
gene arrays as two main categories. Phylogenetic gene arrays often
target rRNA genes, which are useful for identifying specific taxa
within microbial communities and studying phylogenetic rela-
tionships among different microorganisms. Different types of
phylogenetic gene arrays have been developed for microbial ecol-
ogy applications, such as the PhyloChip (32) that broadly targets
known taxa, a microbiota microarray (110) targeting human gut
microbiomes, COMPOCHIP targeting compost-degrading mi-
crobial communities (111), and SRP-PhyloChip for detecting
sulfate-reducing microorganisms (112).

PhyloChip is the most comprehensive and widely used phylo-
genetic gene array. It is a photolithographic Affymetrix-based
technology with 25-mer oligonucleotide probes to discriminate
16S rRNA gene sequences in microbial communities. The most
recent version of the PhyloChip (G3) has probes targeting
~60,000 operational taxonomic units (OTUs), representing 2 do-
mains (Archaea and Bacteria), 147 phyla, 1,123 classes, 1,219 or-
ders, 1,464 families, and 10,993 subfamilies (32). Generally, 16S
rRNA genes are extracted and PCR amplified from microbial
community DNA and then biotin labeled for PhyloChip hybrid-
ization and digital image detection (Fig. 1) (32, 113, 114).

Functional gene arrays contain probes targeting genes involved
in various biogeochemical cycling processes or specific genomes
(115), pangenomes (116), or metagenomes (117), which are use-
ful for monitoring the functional composition and structure of
microbial communities (Fig. 1c). Over the past decade, different
types of functional gene arrays have been developed, including

GeoChip, a generic functional array targeting hundreds of func-
tional gene categories for biogeochemical, ecological, and envi-
ronmental analyses (33, 118), as well as arrays for detecting spe-
cific functional processes, such as nitrogen cycling (119, 120),
methanotrophy (121), virulence (122, 123), stress responses
(124), hydrogen production and consumption (125), marine mi-
crobial communities (117), and bioleaching potential (Fig. 1c)
(126).

The most recent GeoChip (version 5.0) contains about 167,000
50-mer oligonucleotide probes covering ~395,000 coding se-
quences from �1,590 functional genes related to microbial (ar-
chaea, bacteria, fungi, and protists) carbon, nitrogen, sulfur, and
phosphorus cycling, energy metabolism, antibiotic resistance,
metal homeostasis and resistance, secondary metabolism, organic
remediation, stress responses, bacteriophages, and virulence.
GeoChip also uses phylogenetic markers like gyrB rather than 16S
rRNA genes for fine-level phylogenetic analysis (33, 127). To fab-
ricate the GeoChip, it is designed using sequences retrieved from
public databases and the CommOligo program (128). Once probes
are selected, microarrays are spotted or photolithographically
manufactured (e.g., Roche NimbleGen and Agilent). In general,
community nucleic acids are extracted, directly labeled with fluo-
rescent dyes, hybridized with GeoChip, and digitally imaged
(Fig. 1).

Specificity, sensitivity, and quantitation are critical parameters
for any technique used to detect and monitor microorganisms in
natural environments, due to the presence of numerous ortholo-
gous sequences for each gene in a sample (33). Extremely stringent
conditions can improve microarray hybridization specificity, gen-
erating results that can be species/strain specific (33, 129). Also,
only moderate amounts of total community DNA are needed for
PhyloChip and GeoChip analyses. For instance, generally, 0.5 to
2.0 �g of PCR amplicons or ~2.0 �g of total RNA are needed for
PhyloChip hybridization (113, 114), and the PhyloChip exhibits a
detection limit of 107 copies or 0.01% of nucleotides hybridized to
the array (114, 130). For GeoChip hybridization, samples com-
prising 0.2 to 2.0 �g of DNA or 2 to 5 �g of total RNA (33, 118) are
needed, depending on the array format. If the amount of commu-
nity DNA or RNA is not sufficient, it can be amplified using
whole-community genome amplification (131) or whole-
community RNA amplification (132), with initial DNA concen-
trations as low as 10 fg (~2 bacterial cells) resulting in positive
detection but not accurate quantification (131). With appropriate
amounts of unamplified material, reliable quantitation can be ob-
tained with microarrays like the GeoChip (33) and PhyloChip
(130). For example, GeoChip-based studies have shown good cor-
relations between target DNA or RNA concentrations and hybrid-
ization signal intensities using pure cultures, mixed cultures, and
environmental samples without amplification (33, 129–132) over
DNA input amounts varying by 5 orders of magnitude (0.01 to
500 ng) (131). Good correlations have also been reported between
PhyloChip signal intensities and quantitative PCR copy numbers
of over 5 orders of magnitude (130, 133). It should be noted that
PCR amplification biases also occur with the PhyloChip-based
detection approach if the 16S rRNA genes are PCR amplified for
detection prior to hybridization. Recently, two PCR-independent
methods have been developed as viable alternatives to PCR-
amplified microbial community analysis for PhyloChip analysis
(113, 114).
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Key features of array-based detection. Technical reproduc-
ibility in array-based closed-format technologies is less affected by
inadequate random sampling than open-format sequencing tech-
nologies. To better illustrate this point, we return to the hypothet-
ical community described above (Fig. 2a) to analyze it with a
microarray-based technology. Even if the arrays only have probes
covering half of the taxa in the community, the simulated overlap
between two replicate samples is expected to be above 90%
(Fig. 2e). However, taxa with no probes or taxa whose abundance
is below the array detection limit will remain undetected by the
microarrays (Fig. 2c). The number of taxa detected is defined by
the probe sets on the array, and the overlap between samples is less
dependent on the level of sampling effort. Furthermore, because
hybridization is reasonably quantitative, the taxon identities and
abundance distribution are very similar between replicates.

Consequently, depending on the sampling coverage of micro-
bial communities, technical reproducibility can be a significant
issue in open-format approaches, while it is minimized in closed-
format approaches (94, 134). As a consequence, open- and closed-
format detection can yield different results when they are used for
comparing microbial community structure. This could be partic-
ularly important in examining microbial taxa-area relationships
(TARs), one of the best studied and documented patterns in bio-
geography (94, 134), because taxon richness data are used. The
lower susceptibility to random sampling artifacts associated with
closed-format-based detection approaches renders them better
suited for assessing � diversity, which describes the site-to-site
variability in taxon/gene/population composition among com-
munities (89, 94, 95, 117), as well as for detecting low-abundance
organisms (117, 135)

Another feature of the array-based closed-format detection is
that it is less affected by dominant genes/populations because,
although detection is confined to the defined probe set (Table 1),
even low-abundance populations present at numbers above the
detection limit will be detected (135). Unlike the sequencing-
based open-format detections, the array-based closed-format de-
tections are also less susceptible to contaminant DNAs or rRNAs
because only targeted nucleic acids generate signals and, hence,
interference from the contaminating nucleic acids is minimal
(133).

Compared to other high-throughput technologies that target a
single gene, such as targeted sequencing and phylogenetic gene
arrays, functional gene arrays have several unique features (Ta-
ble 1). First, they are capable of simultaneously identifying and
quantifying many microbial functional genes/pathways that are
important for biogeochemical, environmental, and ecological
processes, which is critical for ecosystem-level studies, functional
biodiversity (136), and trait-based microbial biogeography (137).
In contrast, 16S rRNA gene-based techniques do not provide
functional information. Second, functional gene arrays can have
higher taxonomic resolution than the 16S rRNA gene-based ap-
proaches because functional gene markers are generally more di-
vergent than phylogenetic gene markers (129). High taxonomic
resolution is important for differentiating treatment effects and
examining fine-scale biogeographical patterns. Moreover, tech-
nologies that do not require PCR amplification can provide reli-
able quantitative information on the genes detected (8, 89, 129),
across space, time and environmental gradients. However, unlike
the 16S rRNA gene-based technologies, functional arrays may not
be suitable for providing phylogenetic information at high taxo-

nomic levels (e.g., family and above), due to faster molecular evo-
lution (i.e., rapid mutation saturation), lack of representation on
the array, and complications associated with horizontal gene
transfer for some functional genes, especially for the genes in-
volved in metal resistance, antibiotic resistance, and contaminant
degradation. Rapid mutational saturation of the functional genes
could make them less suitable for broad-scale (e.g., continental)
microbial biogeographical investigations because the functional
genes among various communities could diverge too quickly to
preserve signals that would be reliable for resolving broad-scale
biogeographical patterns.

The beneficial characteristics of closed-format technologies,
including high throughput, low detection limits, high reproduc-
ibility, and/or potential for quantification enables them to provide
novel insights into specific ecosystems of interest. For instance,
surprisingly rich and diverse metabolic reservoirs of microbial
communities were revealed using these technologies in a hydro-
thermal vent chimney (135), Antarctic dry valleys (138), and ur-
ban aerosols (130). The importance of stochasticity in controlling
ecological diversity and succession was also recently demonstrated
by GeoChip-based functional community structure data (139,
140).

Challenges and limitations of array-based closed-format de-
tection technologies. Unlike the sequencing-based open-format
detection technologies, one of the main drawbacks of the closed-
format technologies is that they do not enable novel discoveries,
such as new genes, taxa, and/or regulatory elements. This is be-
cause the input required for array construction must be based
upon known sequence information. Thus, the closed-format ap-
proaches are not suitable for novel explorations.

Another major limitation of the array-based closed format is
that all of the probes on the arrays are derived from a chosen set of
genes/sequences that do not necessarily represent the known di-
versity of the microbial communities of interest. As a result,
closed-format technologies will fail to detect potentially impor-
tant taxa not represented on the microarrays, potentially under-
estimating the diversity of microbial communities. Thus, it is nec-
essary to continuously update closed-format technologies to
reflect the expanding knowledge generated by open-format tech-
nologies. Since high-throughput sequencing is ideal for character-
izing diversity and discovering new genes, while functional met-
agenomics assigns function to genes of previously unknown
function, coupling high-throughput sequencing approaches,
functional expression, and array hybridization is desirable for de-
scribing microbial community structure, function, and activity in
a comprehensive manner that includes both depth and breadth, as
well as quantitative and qualitative surveys.

Although many technical challenges regarding environmental
applications of microarrays have been solved over the last decade,
several critical bottlenecks still limit the technology. One critical
issue is the designing of oligonucleotide probes specific to the
target genes/microorganisms of interest when sequences of a par-
ticular phylogenetic/functional gene are highly homologous
and/or incomplete. This is especially challenging when using ar-
rays for analyzing complex natural systems, since the majority of
microorganisms (1, 2) are not yet cultivated and, even among
cultured organisms, the biochemical functions of many genes
have not been assigned, dramatically compounding this issue.

In addition, due to the variability of reagents (e.g., dyes) and
hybridization dynamics, large variations within or between tech-
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nical microarray replicates are sometimes observed, so that nor-
malization within and between replicates (32, 33, 127, 141, 142) is
generally needed. Such variations could affect the probe numbers
detected and their quantitation if they are not well controlled ex-
perimentally. Various types of controls and skilled personnel with
extensive experience are important to minimize such variations.

Finally, due to sequence conservation and the complicated na-
ture of surface hybridization, there can be low-level cross-
hybridization to nontarget genes/strains. The challenge is to dis-
tinguish true hybridization signals from nonspecific background
noise. Also, differentiating genes/populations with low abun-
dance/expression from those not present or not expressed can be a
challenge. Generally, subjective thresholds of signal intensity
based on signal-to-noise ratio are applied to call-positive signals
(33). Thus, great caution is needed in interpreting the gene num-
bers detected when estimating microbial diversity.

CRITICAL ISSUES IN THE USE OF HIGH-THROUGHPUT
METAGENOMIC TECHNOLOGIES TO ADDRESS ECOLOGICAL
QUESTIONS
Quality of community DNA/RNA. Variations in DNA extraction
methods can have dramatic impacts on the results of metag-
enomic studies, especially in high-diversity communities like
those in soil (91, 143). Obtaining representative high-quality
DNA and RNA from environmental samples is challenging since
different populations within the community may require different
lysis conditions and diverse, sometimes unidentified contami-
nants must be removed (144, 145). Thus, any comparisons be-
tween studies, whether the analysis is an open or closed format,
must be undertaken with caution if nucleic acid extraction meth-
ods vary among the studies compared. High-molecular-weight
DNA is required to produce representative, quantitative, and ef-
ficient amplification of whole-community DNA for microarray
analysis (131), to build long-range mate-pair libraries for effective
scaffolding of metagenome sequence, and to perform functional
metagenomic studies in which entire genes or gene clusters linked
to their regulatory sequences need to be maintained intact. But the
gentle extraction methods that produce large DNA fragments may
underrepresent cells that are harder to lyse, such as those of Gram-
positive bacteria and archaea (131). In addition, metagenomic
DNA should be sufficiently pure (e.g., A260/A230 ratios of �1.7) for
subsequent experimental analyses, such as template amplifica-
tions, tagging, or dye labeling. Although PCR amplification can
occasionally be obtained with lower-quality DNA, such amplifi-
cations might be unreliable and carry the risk of biases, errors, and
artifacts. Since community DNA extracted and processed using
many commercial kits is often of low purity or low molecular
weight, well established custom-optimized DNA extraction pro-
tocols are preferred for certain applications (46, 47), ensuring that
reliable experimental data are generated for subsequent resource-
and effort-intensive analyses and interpretation.

Biological and technical replicates. The composition, struc-
ture, activities, and dynamics of microbial communities in natural
settings are shaped by a variety of biological (e.g., competition,
predation, mutualistic interactions) and environmental (e.g.,
temperature, pH, and moisture) factors, which are generally char-
acterized by high spatial and temporal variability. Quantifying the
scale at which variation is of interest (between sites, samples, sub-
samples, nucleic acid extractions, or PCR amplifications) is nec-
essary to determine the nature and degree of replication and to

design proper statistical analysis and interpretation of results.
That is, it is not possible to determine whether communities in
different environments differ significantly if the within-site vari-
ability in sampling and analysis is not known. Technical replicates
(splitting one sample into two or more aliquots prior to parallel
processing and analysis) are useful for estimating the variability
associated with the multiple steps of sample processing and ana-
lytical methods. On the other hand, biological replicates (e.g.,
multiple samples taken from soil plots or microcosms that have
been manipulated identically) are necessary for estimating spatial
and temporal variability associated with experimental conditions
so that proper statistical analysis can lead to appropriate interpre-
tation of data (89, 146). This is especially important for highly
heterogeneous soil samples (114, 147).

Having a priori knowledge of the expected ranges of variability
allows the experimental design to integrate appropriate numbers
and types of replicates. For example, while technical replicates are
often not performed with photolithographic microarrays due to
the known analytical reproducibility of those platforms, biological
replicates are essential for proper statistical analysis (114). In con-
trast, both technical and biological replicates could be important
for PCR amplicon-based sequencing approaches (85, 89). In the
early years of molecular microbial ecology, many studies were
performed without sufficient biological replicates for valid quan-
titative comparisons and statistical analysis (146). In particular,
targeted gene sequencing data may have higher technical varia-
tion, which could make comparative studies challenging, particu-
larly with inadequate sampling and replication (89). Increasing
the biological replicates, even at the cost of sampling depth, can be
an effective way to improve the comparability of data (4, 89, 146).
Based on past experience with soils, 3 to 12 biological replicates are
needed in typical microbial ecology studies, and more replicates
are needed for proper network analysis (4, 148).

Sampling, replication, and sequencing depth. The site-to-site
variability in species/taxon composition, known as � diversity, is
crucial to understanding spatiotemporal patterns of species diver-
sity and the mechanisms controlling community composition and
structure, which is a central but poorly understood issue in ecol-
ogy, especially in microbial ecology. However, quantifying � di-
versity in microbial ecology by using sequencing-based metag-
enomic technologies requires proper experimental design,
including suitable replication, minimal amplification, adequate
depth, and stringent quality control (89, 95).

With recent advances in sequencing technologies and associated
reductions in cost, appropriate replication can be attained with
greater sequencing coverage (29). Balancing sequencing depth with
the number of samples per sequencing run is dependent on the bio-
logical question and the complexity of the community (8, 32, 89). If
the objective is to differentiate the impacts of various conditions (e.g.,
warming versus nonwarming or high versus low CO2 exposure) on
microbial community structure, sampling only dominant microor-
ganisms could be sufficient, necessitating less sequencing coverage
per sample (149). However, if the objective is to focus on microbial
diversity, distribution, and biogeography, sampling rare taxa could be
more important, and thus, deep sequencing with up to millions of
reads per sample may be preferred (29, 150). Increasing the sequenc-
ing depth will reduce the chance of artifacts associated with random
sampling (95). In addition, the sampling effort generally depends on
the variations between microbial communities to be compared. For
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communities that share great similarity, deeper sequencing is needed
to distinguish treatment effects on microbial communities (29).

Relative comparisons. In analyses of microbial communities
with high-throughput molecular technologies, relative compari-
sons are often valid when absolute measurements are not possible.
Making relative comparisons mitigates the possible effects of tech-
nical variations associated with both open and closed detection
formats, such as incomplete cell lysis in DNA extraction, PCR
amplification biases, chimerism, sequencing errors, molecular-
level random sampling artifacts, variability in bioinformatics
analysis, specificity, sensitivity, and/or quantification issues. In
general, relative changes in microbial communities can be reliably
measured by sequence abundance or treatment sample/control
sample hybridization signal ratios. When ratios are used under the
assumption that technical variations are similar between the treat-
ment and control samples, such a relative comparison could can-
cel out the effects of technical variations on the final experimental
outcomes and, hence, increase quantitative accuracy (142). De-
scribing relative changes between treatment and control samples
is usually defensible, whereas describing absolute changes is much
more complicated (32, 147).

One drawback of applying a strictly relative approach is that
changes in relative abundances can easily mask large changes in
actual abundances. In some cases, the change in absolute abun-
dance can be more informative in describing the dynamics of a
population in a community. For example, a 10-fold increase in the
expression of a gene with extremely low abundance may simply be
an artifact, whereas a 10-fold increase in a moderately abundant
gene is more likely to be biologically meaningful. Ideally, both
relative and absolute abundances should be used, but caution is
needed in the interpretation of data, including assessments of sta-
tistical significance.

INTEGRATED FRAMEWORK FOR ANALYZING COMPLEX
MICROBIAL COMMUNITIES

A wide variety of open- and closed-format technologies have been
developed, each having distinct features and advantages suitable
for different applications in microbial ecology, and thus, they pro-
vide complementary approaches for addressing microbial ecology
questions (Table 1). Here, we describe an integrated workflow for
analyzing microbial communities from different environments
using high-throughput metaomic technologies (Fig. 3). Culti-
vated microorganisms are isolated and sequenced to study their
physiology, ecology, gene functions, and regulation. For not-yet
cultivated microorganisms, single-cell genomics (151) may pro-
vide similar information. To study microbial communities, ex-
tracted nucleic acids (DNA/RNA) are analyzed by high-
throughput sequencing, including targeted gene sequencing,
metagenome, and/or metatranscriptome sequencing. The result-
ing sequence data are assembled, annotated, and analyzed with
information from reference isolates or single-cell genomes (Fig. 3)
(152). Functional metagenomics or stable isotope probing (153)
can be integrated into the workflow to assign functions to hypo-
thetical genes and uncharacterized populations. Metaomic data
and functional information can then be used to develop more
comprehensive microarray technologies that complement se-
quencing. Subsequently, both sequencing and microarray data
might be used to link the microbial community structure to eco-
system metadata (e.g., biogeochemical variables) with deeper
sampling. In this manner, open- and closed-format technologies

can be used as complementary tools for examining microbial
community diversity and distribution and to address fundamen-
tal questions in microbial ecology. In addition, the data can be
used for studying microbial network interactions, identifying key-
stone species/populations, examining the effects of environmental
perturbations, and simulating and modeling community dynam-
ics for predictive microbial ecology (148, 154).

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Significant progress has been made in the development and appli-
cation of high-throughput molecular technologies for microbial
community analysis, but many challenges still remain, especially
in the context of environmental applications. For instance, met-
agenomic sequence assembly, especially from complex communi-
ties like those in soil, is one of the grand challenges in bioinfor-
matics (51, 155) although metagenome-specific assembly
algorithms (155) and methods for “binning” genomes from met-
agenome data (64, 156) have led to numerous successes. Single-
cell genomics technologies are also proving to be a powerful com-
plement to metagenome studies (Fig. 3) (50, 151, 152).

Another grand challenge for the application of high-
throughput molecular tools for microbial community research is
the analysis, visualization, and interpretation of massive amounts
of both sequencing and array data, especially shotgun metag-
enome sequencing data (16, 18, 41, 100). For instance, it is difficult
to annotate abundant short read sequences to be tabulated and
compared in an intuitive manner. This limits our ability to address
ecological questions related to microbial biodiversity (e.g., taxo-
nomic, phylogenetic, genetic, functional diversity), functional
trait-based microbial biogeography (94, 134, 137), and ecosystem
functioning, stability, and succession (157–159). Many excellent
bioinformatics tools have been developed for processing, mining,
visualizing, and comparing molecular data (41), but they are not
optimized for dealing with the vast amounts of experimental data
from complex communities like those in soil. Network tools to
delineate the interactions among different microbial populations
based on high-throughput metagenomics datasets are a promising
new development, since understanding the interactions among
different species is a central but poorly understood issue in micro-
bial ecology (Fig. 3) (4, 99, 160).

Each omics technology has its strengths and weaknesses and
must be selected based on the biological questions and objectives
of the study (Fig. 3). In general, open-format technologies are
most suitable for exploratory discovery studies, whereas the
closed-format technologies can be advantageous for more nar-
rowly defined, hypothesis-driven, quantitative, and comparative
studies (117). As sequencing technologies improve and costs de-
crease, high-throughput sequencing may replace microarrays as
the method of choice for many applications (40), but for now,
microarray-based closed-format approaches play a valuable role
in microbial community analysis, especially for complex micro-
bial communities whose comprehensive sampling remains infea-
sible (16). Functional metagenomics will continue to identify
functions of previously unknown genes. As more functional gene
sequences of interest become available, functional arrays that are
both more comprehensive (e.g., the next generation of GeoChip,
with up to 1 million probes) and more specific (e.g., PathoChip
and StressChip) (123, 124) will be developed for addressing dif-
ferent ecological questions and applications. Also, high-
throughput molecular technologies should be integrated with
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other approaches, such as single-cell genomics, metaproteomics
(161), and metametabolomics (35, 162), as well as targeted tech-
niques like stable isotope probing (Fig. 3), to address ecological

questions and hypotheses within the context of environmental
and medical applications. Only in this way will their power for
microbial community analysis be realized.

FIG 3 An integrated workflow for analyzing microbial communities from different environments using high-throughput metaomic technologies. DNA, RNA,
proteins, and/or metabolites are extracted from environmental samples for sequencing and protein/metabolite identification. At the same time, physiological,
ecological, and functional information can be obtained via reference genomes and single-cell genomics, which helps with sequencing data analysis and functional
annotation, generating useful information for microarray development, especially with novel genes. Microarray-based technologies can be used as a routine tool
to address various microbial ecology questions in a rapid and cost-effective manner. Furthermore, metagenomic, metaproteomic, metametabolomic, stable
isotope probing, and microarray data can be used alone or coupled with metadata for network analysis and modeling, understanding of microbial diversity,
distribution and assembly mechanisms, and linking the microbial community structure with both environmental factors and ecosystem functioning.
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The ultimate goal of microbial ecology is to understand who is
where, with whom, doing what, why, and when (159). To answer
such questions, reliable, reproducible, quantitative, and statisti-
cally valid (146) experimental information on community-wide
spatial and temporal dynamics is needed. Also, to achieve this
predictive goal, it is essential to model microbial community dy-
namics and their behaviors at both structural and functional levels
(Fig. 3). With the rapid and continuous advances of molecular
high-throughput technologies and high-performance computa-
tional tools, it is anticipated that in the not-too-distant future,
microbiologists will be able to model and predict the behaviors of
microbial communities. A new era of quantitative predictive mi-
crobial ecology is coming.
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