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Genetic polymorphisms and benzene metabolism in humans
exposed to a wide Range of air concentrations
Sungkyoon Kima, Qing Lanb, Suramya Waidyanathaa, Stephen Chanockb,c,
Brent A. Johnsona, Roel Vermeulenb, Martyn T. Smithd, Luoping Zhangd,
Guilan Lie, Min Shenb, Songnian Yine, Nathaniel Rothmanb and
Stephen M. Rappaporta

Using generalized linear models with natural-spline

smoothing functions, we detected effects of specific

xenobiotic metabolizing genes and gene–environment

interactions on levels of benzene metabolites in 250

benzene-exposed and 136 control workers in Tianjin, China

(for all individuals, the median exposure was 0.512 p.p.m.

and the 10th and 90th percentiles were 0.002 and

6.40 p.p.m., respectively). We investigated five urinary

metabolites (E,E-muconic acid, S-phenylmercapturic acid,

phenol, catechol, and hydroquinone) and nine

polymorphisms in seven genes coding for key enzymes in

benzene metabolism in humans {cytochrome P450 2E1

[CYP2E1, rs2031920], NAD(P)H: quinone oxidoreductase

[NQO1, rs1800566 and rs4986998], microsomal epoxide

hydrolase [EPHX1, rs1051740 and rs2234922],

glutathione-S-transferases [GSTT1, GSTM1 and

GSTP1(rs947894)] and myeloperoxidase [MPO,

rs2333227]}. After adjusting for covariates, including sex,

age, and smoking status, NQO1*2 (rs1800566) affected all

five metabolites, CYP2E1 (rs2031920) affected most

metabolites but not catechol, EPHX1 (rs1051740 or

rs2234922) affected catechol and S-phenylmercapturic

acid, and GSTT1 and GSTM1 affected S-phenylmercapturic

acid. Significant interactions were also detected between

benzene exposure and all four genes and between

smoking status and NQO1*2 and EPHX1 (rs1051740). No

significant effects were detected for GSTP1 or MPO.

Results generally support prior associations between

benzene hematotoxicity and specific gene mutations,

confirm earlier evidence that GSTT1 affects production of

S-phenylmercapturic acid, and provide additional evidence

that genetic polymorphisms in NQO1*2, CYP2E1, and

EPHX1 (rs1051740 or rs2234922) affect metabolism of

benzene in the human liver. Pharmacogenetics and
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Introduction
Benzene is an important industrial chemical that is

ubiquitous in the environment owing to vaporization from

petroleum products and combustion of hydrocarbons

[1–3]. Occupational exposures to benzene can cause

blood disorders, including aplastic anemia, myelodysplas-

tic syndrome, and acute myelogenous leukemia [4–7].

Significant decreases in the numbers of white blood cells

and platelets have been reported in workers exposed to

less than one p.p.m. of benzene in air [8]. Although these

toxic effects are related to metabolism of benzene in the

liver, the particular metabolite(s) that damage bone

marrow cells and the mode of toxic action are subjects

of debate [9–11].

Since the pioneering work of Parke and Williams’ [12,13],

the metabolism of benzene has been extensively

investigated (reviewed in [9,10]). The major metabolic

pathways, shown in Fig. 1, begin with cytochrome P450

CYP2E1-mediated oxidation of benzene to benzene oxide

(BO), which is in equilibrium with its tautomer, oxepin.

BO–oxepin is the source of all other major metabolites,

namely, phenol (PH), E,E-muconic acid (MA), hydro-

quinone (HQ), and catechol (CA), and the minor

product, S-phenylmercapturic acid (SPMA). All of these

metabolites are excreted in urine, either free or in

conjugated form. Additional metabolism of the primary

metabolites produces additional electrophilic species,

including the muconaldehydes (from CYP oxidation of
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oxepin followed by ring opening), and 1,2-benzoquinone

and 1,4-benzoquinone (BQ) (from spontaneous or per-

oxidase-mediated oxidation of CA and HQ, respectively).

As shown in Fig. 1, numerous enzyme systems are

involved in the metabolism of benzene and its metabo-

lites. In addition to the CYP oxidations of benzene

(to BO), oxepin (to the muconaldehydes and ultimately

MA) and PH (to HQ) [14–16], microsomal epoxide

hydrolase (EPHX) catalyzes the hydrolysis of BO to

initiate the CA pathway [14,17], various glutathione-S-

transferases (GSTs) catalyze production of SPMA [18],

and NAD(P)H: quinone oxidoreductase (NQO1) and

peroxidases [notably myeloperoxidase (MPO)] are

thought to catalyze transformations between CA and

HQ and the corresponding quinones (1,2-BQ and 1,4-BQ,

respectively) [10,14,19,20].

It has been speculated that polymorphic genes of the

above enzymes predispose some individuals to benzene

toxicity through metabolism [21–23]. In particular,

individuals with wild-type MPO (more active) and a

variant of NQO1 (less active) were found to be at greater

risk of reduced numbers of white blood cells at low levels

of benzene exposure [8]. Yet, although GSTT1 poly-

morphisms have been shown to affect production of the

minor metabolite SPMA [24–26], there is only sketchy

evidence that the major metabolites (PH, MA, HQ,
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and CA) are affected by polymorphic forms of CYP2E1,

EPHX, NQO1, or MPO.

A major difficulty in elucidating the connections between

genotypes of metabolizing genes and the corresponding

in-vivo phenotypes has been the inability to control for

the effects of benzene exposure, and important physio-

logical and lifestyle factors, in observational studies.

Indeed, the relationship between metabolite levels and

benzene exposure is highly nonlinear and is significantly

affected by sex, age, smoking status, and body mass index

(BMI) [27,28]. Using generalized linear models (GLM)

with natural spline (NS) smoothing functions, we were

able to elucidate the effects of sex, age, smoking status

and BMI, after adjustment for benzene exposure

(between 0.003 and 88.9 p.p.m.) in a sample of 326

individuals, who were exposed to benzene occupationally

and environmentally in Tianjin, China [28]. In the

current paper, we extend our application of GLM + NS

models to investigate the effects of polymorphic forms of

CYP2E1, EPHX, NQO1, MPO, and GSTs on urinary levels

of PH, MA, HQ, CA, and SPMA in the same population.

Materials and methods
Study population, and air and biological sample

collection

Exposed and control study participants were recruited

with informed consent from two shoe-making factories

and three clothes-manufacturing factories, respectively,

in Tianjin, China as described by Lan et al. [8].

Characteristics of the workplaces and levels of benzene

exposure have been described previously in detail

[8,27,29]. After excluding four controls, who were missing

measurements of metabolites and/or exposures, the

samples included 250 exposed individuals and 136

controls. Exposed and control participants were fre-

quency-matched with respect to sex. Table 1 shows

summary statistics for the sex, age and smoking status of

participants. Methods of sampling air and urine were also

described previously [8,27,29]. Briefly, personal full-shift

air measurements were matched with urine samples after

shift from exposed and control workers. Of the 386

participants in this analysis, 139 had repeated measure-

ments of air and urine, making a total of 617 matched air/

urine samples. Among participants with repeated mea-

surements, the median number of paired air and urine

samples was 3 (range 2–4). Information about height,

weight, smoking status and other relevant factors were

obtained by questionnaire [8].

This study was approved by the Institutional Review

Boards of the University of North Carolina, the University

of California, Berkeley, the US National Cancer Institute

and the Chinese Academy of Preventive Medicine.

Measurements of air and urinary analytes

Measurements of analytes in air and urine were described

previously [27–29]. Briefly, benzene and toluene were

measured in air using passive personal monitors (Organic

Vapor Monitors, 3M, St Paul, Minnesota, USA) followed

by solvent desorption and gas chromatography [29]. Air

measurements of benzene and toluene were below limits

of detection [(LOD), nominally 0.2 p.p.m. for benzene

and 0.3 p.p.m. for toluene] or were missing for all controls

and for some exposed participants (missing values,

n = 23; measurements below the LOD, n = 70 for

benzene and n = 67 for toluene). Air levels were

predicted in these censored and missing air samples from

the corresponding urinary levels of benzene and toluene,

as described previously for benzene [28]. As summarized

in Table 1, the median air level of benzene was

0.512 p.p.m., the 10th percentile level was 0.002 p.p.m.

and the 90th percentile was 6.40 p.p.m. The median air

level of toluene was 1.77 p.p.m.

Urinary benzene was determined by gas chromatography–

mass spectrometry (GC–MS) using head–space solid-

phase microextraction according to Waidyanatha et al.

Table 1 Demographics, benzene exposure and other characteristics of the study population (n = 386)

Women Men All

Occupational exposurea

Controls (%) 84 (61.8) 52 (38.2) 136 (100.0)
Exposed (%) 164 (65.6) 86 (34.4) 250 (100.0)

Benzene exposureb

Air benzene (p.p.m.) 0.517 (0.002–6.63) 0.487 (0.002–3.78) 0.512 (0.002–6.40)
Age (years)b 31 (21–44) 24 (20–39) 28 (21–43)
BMI (kg/m2)b 21.9 (18.7–27.0) 22.0 (18.4–26.5) 21.9 (18.7–26.9)
Current smoking statusa

Nonsmoker (%) 240 (81.4) 55 (18.6) 295 (100.0)
Smoker (%) 8 (8.8) 83 (91.2) 91 (100.0)

Toluene exposurea

Low [r1.77 p.p.m. (%)] 130 (67.4) 63 (32.6) 193 (100.0)
High [ > 1.77 p.p.m. (%)] 118 (61.1) 75 (38.9) 193 (100.0)

BMI, body mass index.
aNumber (percent).
bMedian (10–90th percentiles).
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[30]. Urinary PH, CA, HQ, MA, and SPMA were

measured as trimethylsilylether derivatives by GC–MS,

after digestion of urine to release conjugates, according to

Waidyanatha et al. [31]. Quantification of all urinary

analytes was based on peak areas relative to the

corresponding isotopically labeled internal standards.

The minor metabolite, SPMA, was not detected in 30

urine specimens; a value of LOD=
ffiffiffi

2
p
¼ 0:591nmol=l was

imputed to these samples [32].

Genotyping

We selected nine polymorphisms in seven genes coding

for key enzymes in benzene metabolism, on the basis of

the evidence of functionality in experimental or human

studies (described in the discussion section). As sum-

marized in Table 2 [33–41], the following genetic

polymorphisms were chosen: CYP2E1 (rs2031920: C-
T), two alleles of NQO1 [NQO1*2 (rs1800566: C-T) and

NQO1*3 (rs4986998: C-T)], MPO (rs2333227: G-A),

GSTM1, GSTT1, and GSTP1 (rs947894: A-G), and two

alleles of EPHX1 [(rs1051740: T-C) and (rs2234922:

A-G), respectively] [42]. Genotyping was performed

with an ABI 7900HT detection system using TaqMan

end points as described on the website, http://

snp500cancer.nci.nih.gov [43]. The numbers of partici-

pants with each polymorphism of the various metaboliz-

ing genes are summarized in Table 2. Quality control

procedures have been described previously [44]. In brief,

blind replicate samples were randomly interspersed

throughout the study sample plates and showed intra-

subject agreement > 99% for all genotype assays.

Statistical analyses

Relationships between levels of the urinary metabolites

and the corresponding air concentrations of benzene were

examined using GLM + NS models, as described pre-

viously [28]. The smoothing functions were based upon

5-knot models for all metabolites, after comparing NS

models with 5–7 knots by visual inspection and corrected

Akaike’s Information Criteria (AICc) [45]. (The candi-

date knots in the 5-knot model were 0.001, 0.009, 0.512,

1.54, and 11.3 p.p.m. of benzene in air, corresponding to

the 5th, 27.5th, 50th, 72.5th, and 95th percentiles [46],

respectively). To avoid overparameterization, nonsignifi-

cant knots for each exposure–metabolite relationship

were removed by stepwise elimination using a value of

P < 0.10 for retention (PROC REG of SAS; SAS

Institute, Cary, North Carolina, USA) [28]. For partici-

pants with repeated measurements of air and urine, the

estimated geometric mean air and metabolite concentra-

tions were used in all statistical analyses.

After establishing NS smoothing functions for each

metabolite, we used GLM to investigate effects of

genetic polymorphisms and their interactions with

benzene exposure and smoking status, after adjusting

for the following covariates: sex (0, women; 1, man), age

(centered around the estimated mean value of 29.8 years,

n = 386), smoking status (0, nonsmoker; 1, smoker), BMI

(centered around the estimated mean value of 22.5 kg/m2,

n = 384). We also investigated effects of toluene exposure

(0, low exposure; 1, high exposure; median as a cutoff

point, 1.77 p.p.m.) on levels of each metabolite.

Table 2 Distributions of genetic polymorphisms among participants in the study

Gene name, SNP region, SNP ID (notes) Genotype No. participants (%) Presumed phenotype Reference

CYP2E1, – 1054C-T, Rs2031920, (ascribed to RsaI) C/C 239 (62.1) Active [33]
C/T 127 (33) Less active
T/T 19 (4.9) Least active

NQO1, Ex6 + 40C-T, Rs1800566, (NQO1*2) C/C 105 (27.3) Active [34]
C/T 173 (44.9) Less active
T/T 107 (27.8) Inactive

NQO1, Ex4 – 3C-T, Rs4986998, (NQO1*3) C/C 359 (93.7) Active [35]
C/T 24 (6.3) Less active [36]
T/T 0 (0.0) Least active

MPO, – 642G-A, Rs2333227 G/G 297 (77.3) Active [37]
G/A 76 (19.8) Less active
A/A 11 (2.9) Least active

GSTM1, del{GSTM1}, n/a + / + 28 (7.4) Conjugator [38]
+ / – 141 (37.2)
– / – 210 (55.4) Null

GSTT1, del{GSTT1}, n/a + / + 33 (8.6) Conjugator [38]
+ / – 187 (48.8)
– / – 163 (42.6) Null

GSTP1, Ex5 – 24A-G, Rs947894 A/A 224 (58.6) Conjugator [39]
A/G 142 (37.2)
G/G 16 (4.2) Less active

EPHX1, Ex3 – 28T-C, Rs1051740, (Y113H) T/T 143 (38) Normal [40]
T/C 176 (46.8) [41]
C/C 57 (15.2) Slow metabolizer

EPHX1, Ex4 + 52A-G, Rs2234922, (H139R) A/A 302 (79.9) Normal [40]
A/G 71 (18.8) [41]
G/G 5 (1.3) Rapid metabolizer

SNP, single nucleotide polymorphism.
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Potential effects of genetic polymorphisms were screened

in two stages to explore exposure-related interactions and

smoking-related interactions, respectively. In both stages,

the number of effects was restricted to less than 10% of

observations to avoid overfitting. Then, important main

effects and interactions were pooled from the two stages

to build final models. Every candidate model for a given

benzene metabolite was sorted by AICc, and the final

model was selected from the best and second best

candidates, using the following criteria: DAICc, evidence

ratio, and the significance and biological plausibility of

explanatory variables [45]. Modeling was performed using

PROC GLMSELECT of SAS/STAT with the selection/

stop option of AICc [45,47].

In coding each genetic polymorphism, the homozygous

wild-type was defined as the reference group. For EPHX1
(rs2234922: A-G), variant homozygotes and heterozy-

gotes were combined in the analysis because the former

contained only five participants (1.3%) [44]. Tests for

Hardy–Weinberg equilibrium (HWE) among participants

were conducted on the basis of observed genotype

frequencies using PROC ALLELE of SAS/GENETICS

(using a Pearson’s w2 test with one degree of freedom). All

genotypes were in HWE except MPO (rs2333227: G-A)

(P = 0.04). The quality control data were rechecked and

the precision of genotyping for this genetic polymorphism

in blind replicates was confirmed; so this slight departure

from HWE is likely due to chance. Tukey–Cramer

adjustment was carried out for multiple comparisons of

least-squares means among genetic polymorphisms in the

final models.

All statistical analyses were performed using SAS software

for Windows ver. 9.13 (SAS Institute).

Results
GLM + NS models and covariate effects

The following NS smoothing functions were used for the

five benzene metabolites:

MA :E½lnðYMA; jÞj lnðXjÞ�
¼ 0:754þ 0:127½lnðXjÞ�
þ 0:005½lnðXjÞ � x1�3þ
� 0:019½lnðXjÞ � x3�3þ

SPMA :E½lnðYSPMA; jÞj lnðXjÞ�
¼ �6:65� 0:119½lnðXjÞ�
þ 0:030½lnðXjÞ � x1�3þ
� 0:040½lnðXjÞ � x2�3þ

PH :E½lnðYPH; jÞj lnðXjÞ�
¼ 4:38þ 0:053½lnðXjÞ�
þ 0:005½lnðXjÞ � x2�3þ

CA :E½lnðYCA; jÞj lnðXjÞ�
¼ 3:02þ 0:098½lnðXjÞ�
� 0:005½lnðXjÞ � x1�3þ
þ 0:011½lnðXjÞ � x2�3þ

and

HQ:E½lnðYHQ; jÞj lnðXjÞ�
¼ 1:72� 0:016½lnðXjÞ�
þ 0:004½lnðXjÞ � x1�3þ
� 0:123½lnðXjÞ � x5�3þ

where E[ln(Ym, j)|ln(Xj)] is the conditional mean value of

ln(Ym, j) representing the natural log transform of the

level of the mth metabolite level in the jth individual

exposed at ln(Xj), the corresponding (logged) air con-

centration of benzene (p.p.m.), and xi is the location

of the ith knot (in log-scale of benzene exposure):

x1 = ln(0.001 p.p.m.), x2 = ln(0.009 p.p.m.), x3 = ln(0.512

p.p.m.), x4 = ln(1.54 p.p.m.), x5 = ln(11.3 p.p.m.). The

Table 3 Parameter estimates for the final model of MA. [The dependent variable was the natural logarithm of the MA concentration
(lmol/l); n = 382, R2 = 85.0%]

Independent variable Description Parameter estimates Standard error P-value Cumulative DR 2 (%)

Intercept 0.937 0.197 < 0.0001
Age (years) Centered at mean (29.8 years) – 0.017 0.005 < 0.001
Sex Male – 0.276 0.099 0.005
Smoking Smoker 0.177 0.107 0.099
BMI Centered at mean (22.5 kg/m2) 0.019 0.011 0.076
ln(Xj )�NQO1*2 ln(Xj )� *1/*2, less active – 0.076 0.027 0.005

ln(Xj )� *2/*2, least active – 0.070 0.029 0.016 0.37
NQO1*2 (rs1800566: C-T) *1/*2, less active – 0.174 0.099 0.081

*2/*2, least active – 0.184 0.110 0.094 0.38
ln(Xj )�CYP2E1 ln(Xj )�C/T, less active 0.001 0.024 0.955

ln(Xj )� T/T, least active – 0.150 0.042 < 0.001 1.00
CYP2E1 (rs2031920: C-T) C/T, less active 0.037 0.087 0.667

T/T, least active – 0.406 0.191 0.034 1.01

BMI, body mass index; MA, E,E-muconic acid.
ln(Xj ) represents the natural logarithm of the air benzene concentration (p.p.m.) in the j th participant.
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function ½lnðXjÞ � xi�3þ equals ½lnðXjÞ � xi�3 for positive

values and equals zero otherwise.

Final GLM + NS models are summarized in Tables 3–7

for the five benzene metabolites. Referring to the

nongenetic effects, results are similar to those reported

previously without adjustment for genetic polymorphisms

[28]. Women participants had higher levels of MA, PH,

CA, and HQ than men (P < 0.05) and younger individuals

(below 30 years) had higher levels of MA, PH, and HQ

than older individuals. Smokers generally had higher

levels of benzene metabolites than nonsmokers, but the

relationships were complicated by gene–smoking inter-

actions for SPMA, PH, and CA. No significant effects

were observed on any of the benzene metabolites for

either BMI or coexposure to toluene.

Effects of genetic polymorphisms

After adjusting for exposure and covariates, the following

genetic polymorphisms were found to significantly affect

levels of the various metabolites, either as main effects or

as interactions with benzene exposure and/or smoking:

NQO1*2 (rs1800566: C-T) for all metabolites, CYP2E1
(rs2031920: C-T) for all metabolites except CA, GSTT1
and GSTM1 for SPMA, EPHX1 (rs2234922: A-G) for

SPMA and CA, and EPHX1 (rs1051740: T-C) for CA.

(Note that negative values of estimated parameters

indicate lower metabolite levels and vice versa). The

interaction between CYP2E1 and benzene exposure

accentuated the effects of polymorphic forms of this

gene on levels of MA, PH, and HQ among individuals

exposed to higher benzene concentrations (Tables 3, 5

and 7). For each of these metabolites, individuals having

Table 4 Parameter estimates for the final model of SPMA. [The dependent variable was the natural logarithm of the SPMA concentration,
(lmol/l); n = 365, R2 = 82.0%]

Independent variable Description Parameter estimate Standard error P-value Cumulative DR 2 (%)

Intercept – 4.811 0.685 < 0.0001
Age (years) Centered at mean (29.8 years) – 0.012 0.009 0.161
Sex Male – 0.280 0.181 0.123
Smoking Smoker – 0.690 0.337 0.042
BMI Centered at mean (22.5 kg/m2) – 0.025 0.019 0.189
GSTM1 + / – , less active – 0.458 0.254 0.072

– / – , null – 0.590 0.248 0.018 0.31
ln(Xj )�EPHX1 ln(Xj )� (A/G or G/G, faster) 0.101 0.051 0.049 0.55
EPHX1 (rs2234922: A-G) A/G or G/G, faster 0.234 0.187 0.213 0.56
ln(Xj )�NQO1*2 (rs1800566: C-T) ln(Xj )� *1/*2, less active – 0.149 0.049 0.003

ln(Xj )� *2/*2, least active – 0.069 0.053 0.199 0.98
ln(Xj )�CYP2E1 ln(Xj )�C/T, less active 0.114 0.045 0.011 1.44

ln(Xj )� T/T, least active – 0.038 0.076 0.617
CYP2E1 (rs2031920: C-T) C/T, less active 0.146 0.159 0.357 1.50

T/T, least active – 0.480 0.345 0.164
Smoking�NQO1*2 Smoker� *1/*2, less active 1.108 0.385 0.004

Smoker� *2/*2, least active 1.041 0.413 0.012 1.94
NQO1*2 (rs1800566: C-T) *1/*2, less active – 0.654 0.203 0.001

*2/*2, least active – 0.646 0.227 0.005 2.01
ln(Xj )�GSTT1 ln(Xj )� + / – , less active – 0.035 0.069 0.614

ln(Xj )� – / – , null – 0.143 0.070 0.041 2.63
GSTT1 + / – , less active – 0.592 0.251 0.019

– / – , null – 1.444 0.258 < 0.0001 4.86

SPMA, S-phenylmercapturic acid; BMI, body mass index.
ln(Xj ) represents the natural logarithm of the air benzene concentration (p.p.m.) in the j th participant.

Table 5 Parameter estimates for the final model of PH. [The dependent variable was the natural logarithm of the PH concentration,
(lmol/l); n = 382, R2 = 64.8%]

Independent variable Description Parameter estimate Standard error P-value Cumulative DR 2 (%)

Intercept 4.645 0.100 < 0.0001
Age (years) Centered at mean (29.8 years) – 0.010 0.004 0.014
Sex Male – 0.313 0.090 0.001
Smoking Smoker – 0.204 0.167 0.222
BMI Centered at mean (22.5 kg/m2) 0.007 0.010 0.477
Smoking�NQO1*2 Smoker� *1/*2, less active 0.311 0.192 0.106 0.67

Smoker� *2/*2, least active 0.538 0.204 0.009
NQO1*2 (rs1800566: C-T) *1/*2, less active – 0.196 0.085 0.022 1.31

*2/*2, least active – 0.337 0.097 0.001
ln(Xj )�CYP2E1 ln(Xj)�C/T, less active 0.026 0.022 0.230 2.75

ln(Xj)� T/T, least active – 0.141 0.038 < 0.001
CYP2E1 (rs2031920: C-T) C/T, less active 0.037 0.079 0.640 3.08

T/T, least active – 0.613 0.174 0.001

BMI, body mass index; PH, phenol.
ln (Xj ) represents the natural logarithm of the air benzene concentration (p.p.m.) in the j th participant.
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both variant alleles of CYP2E1 had lower metabolite

levels than those with at least one wild-type allele. For

example, the relationships for HQ, shown in Fig. 2a,

indicate that homozygous variants produced appreciably

less metabolite than heterozygotes or homozygous wild-

types at air concentrations greater than 0.1 p.p.m.

(Tukey’s test, P < 0.05). Similar behaviors were observed

for PH, where significant departure was observed above

0.2 p.p.m., and for MA above 2 p.p.m. For SPMA, the

effect of CYP2E1 was unclear. Individuals with both

variant alleles of CYP2E1 had the lowest metabolite levels

at benzene concentrations between 0.02 and 88.9 p.p.m.;

however, the difference was not statistically significant

(P > 0.05).

Participants with at least one variant allele of NQO1*2
(rs1800566: C-T) had lower levels of all metabolites

than homozygous wild-types or heterozygotes (Tables

3–7). This gene was also found to interact strongly with

benzene exposure (for MA, SPMA, and CA) and/or

smoking status (for PH and SPMA). These interactions

with benzene exposure resulted in participants with at

least one variant allele of NQO1*2 (rs1800566: C-T)

having lower levels of CA above 0.8 p.p.m. (P < 0.05,

Fig. 2b), lower levels of MA above 6 p.p.m. (P < 0.05),

and lower levels of HQ over the entire range of exposure

(significance, P < 0.1). Among nonsmokers, participants

with NQO1*1/*1 produced more SPMA above 0.5 p.p.m.

(Fig. 2c, P < 0.05) and more PH over the entire range of

exposure (Fig. 2d, P < 0.01) than participants with

NQO1*2/*2. Among smokers, however, these effects were

diminished (Figs. 2d and e). No effects were observed for

NQO1*3 (rs4986998: C-T) polymorphisms.

Strong effects of GSTT1 and GSTM1 were observed

on levels of SPMA, with homozygous variants producing

the highest levels, followed by heterozygotes and

homozygous null individuals (Table 4). A significant

interaction was also observed between benzene exposure

and GSTT1 null individuals, such that these workers

produced increasingly less SPMA at higher air concentra-

tions (see Fig. 2e). No effect of polymorphic forms

of GSTP1 (rs947894: A-G) was observed on SPMA

levels.

Table 7 Parameter estimates for the final model of HQ. [The dependent variable was the natural logarithm of the HQ concentration,
(lmol/l); n = 382, R2 = 72.6%]

Independent variable Description Parm. est. Standard error P-value Cumulative DR 2 (%)

Intercept 1.758 0.118 < 0.0001
Age Centered at mean (29.8 years) – 0.011 0.004 0.006
Sex Male – 0.302 0.082 < 0.001
Smoking Smoker 0.473 0.089 < 0.0001
BMI Centered at mean (22.5 kg/m2) – 0.010 0.009 0.248
NQO1*2 (rs1800566: C-T) �1/*2, less active – 0.087 0.070 0.215 0.34

*2/*2, least active – 0.164 0.078 0.036
ln(Xj )�CYP2E1 ln(Xj )�C/T, less active – 0.008 0.020 0.676 1.25

ln(Xj )� T/T, least active – 0.125 0.035 < 0.001
CYP2E1 (rs2031920: C-T) C-T, C/T, less active – 0.036 0.072 0.617 1.77

C-T, T/T, least active – 0.657 0.160 < 0.0001

BMI, body mass index; HQ, hydraquinone.
ln(Xj ) represents the natural logarithm of the air benzene concentration (p.p.m.) in the j th participant.

Table 6 Parameter estimates for the final model of CA. [The dependent variable was the natural logarithm of the CA concentration,
(lmol/l); n = 370, R2 = 57.2%]

Independent variable Description Parameter estimate Standard error P-value Cumulative DR 2 (%)

Intercept 3.072 0.285 < 0.0001
Age (years) Centered at mean (29.8 years) < 0.001 0.004 0.997
Sex Male – 0.272 0.087 0.002
Smoking Smoker 0.567 0.127 < 0.0001
BMI Centered at mean (22.5 kg/m2) – 0.007 0.009 0.448
ln(Xj )�NQO1*2 ln(Xj)� *1/*2, less active – 0.037 0.023 0.113 0.67

ln(Xj )� *2/*2, least active – 0.058 0.025 0.021
NQO1*2 (rs1800566: C-T) *1/*2, less active – 0.186 0.089 0.036 0.96

*2/*2, least active – 0.237 0.097 0.015
EPHX1 (rs2234922: A-G) A/G or G/G, faster 0.143 0.076 0.061 1.43
ln(Xj )�EPHX1 (rs1051740: T-C) ln(Xj )� (T/C, slow) – 0.039 0.021 0.063 2.22

ln(Xj )� (C/C, slower) – 0.069 0.028 0.014
Smoking�EPHX1 Smoker� (T/C, slow) – 0.163 0.156 0.299 3.32

Smoker� (C/C, slower) – 0.633 0.206 0.002
EPHX1 (rs1051740: T-C) T/C, slow – 0.019 0.086 0.827 3.36

C/C, slower 0.096 0.118 0.420

BMI, body mass index; CA, catechol.
ln(Xj ) represents the natural logarithm of the air benzene concentration (p.p.m.) in the j th participant.
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Participants with variant alleles of EPHX1 (rs1051740:

T-C) had lower levels of CA, particularly among

smokers, than homozygous wild-types (see Table 6).

Owing to the interaction of EPHX1 (rs1051740: T-C)

with benzene exposure, this effect was accentuated

among smokers at air concentrations above 0.8 p.p.m.

(P < 0.05) (Fig. 2f). Participants with at least one variant

allele of EPHX1 (rs2234922: A-G) had higher CA levels

than homozygous wild-types (P = 0.06). Interestingly,

participants with variant EPHX1 (rs2234922: A-G) also

had higher levels of SPMA at benzene concentrations

above 6 p.p.m. (P < 0.1).

Fig. 2
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No effects were observed for polymorphic forms of MPO
(rs2333227: G-A).

Discussion
Although the hematotoxicity of benzene was reported

more than a century ago, the mechanism is not yet fully

understood [9]. It has been speculated that genetic

and lifestyle factors can influence the toxic effects of

benzene, but current evidence is far from conclusive

[9–11]. Rothman et al. [23] reported that heavily

benzene-exposed workers who were rapid chlorzoxazone

metabolizers (a measure of CYP2E1 phenotype) and also

possessed variant NQO1*2 (rs1800566: C-T), were at

elevated risk of benzene poisoning. More recently, Wan

et al. [48] reported increased benzene poisoning in

workers with variant NQO1*2 (rs1800566: C-T) and in

those with null-type GSTT1 or CYP2E1 DraI, and Lan

et al. [8] found lower white blood cell counts in workers

with variants of NQO1*3 (rs4986998: C-T) and MPO
(rs2333227: G-A). Other studies of polymorphisms

among benzene-exposed workers reported that indivi-

duals with variant NQO1*2 (rs1800566: C-T) had

increased DNA single-strand breaks [49] but decreased

aneuploidy [50] in peripheral lymphocytes. The latter

study also reported increased aneuploidy in benzene-

exposed workers with null deletions of GSTT1 and

GSTM1 and with either of two CYP2E1 mutations (DraI

or RsaI) [50].

In the present study, we focused upon the effects of

metabolizing genes on production of five prominent

metabolites (MA, SPMA, PH, CA and HQ). These

metabolites are not ‘biological effect markers’ [51] per se,
but rather reflect primary metabolism in the liver, which

appears to be a necessary prelude to benzene-induced

toxicity in target organs [9,10]. Previous attempts to link

levels of benzene metabolites with polymorphic forms of

metabolizing genes have been hampered by methodolo-

gical and practical problems, including low benzene

exposures (below 0.1 p.p.m.) [18,25,26,52,53], no mea-

surements of air exposure [38,48,54,55], small numbers of

participants [25,26,50,53], and difficulties in adjusting for

covariates and nonlinear effects of exposure [24,49]. As

benzene exposures were typically very low in previous

studies, only SPMA and MA (metabolites with high

specificity for benzene) tended to be measured, and the

only consistent effect of any genetic polymorphism was

that of lower SPMA levels in individuals with GSTT1
(null deletion) [24–26].

We detected several effects of genetic polymorphisms

on benzene metabolite patterns and interactions with

benzene exposure that have not been reported previously

(Tables 3–7). Our study had substantially more partici-

pants (386) and therefore, greater power to detect such

effects. Further strengths of our study were the ability to

examine effects over a wide range of benzene exposures,

determined in both benzene-exposed workers and con-

trols, broad exploration of genetic variants in key genes,

evaluation of all major benzene urinary metabolites, and

use of GLM + NS models to adjust for exposure and

covariates. At the same time, it is possible that some

findings could be false positives, and these findings need

to be replicated in other large studies.

Individuals with NQO1*2 (rs1800566: C-T) had lower

levels of all five metabolites in our study. As NQO1

catalyzes two-election or four-election reductions of

quinones [34,56–59], and the NQO1*2 polymorphism is

associated with a lack of NQO1*2 protein [20], it is

reasonable that the levels of CA and HQ would be lower

in individuals with NQO1*2 (rs1800566: C-T) (Tables 6

and 7). When combined with evidence that less active

forms of NQO1 are associated with benzene poisoning and

DNA damage [8,23,48,49], this finding is also consistent

with speculation that 1,4-BQ and/or 1,2-BQ (the oxidized

forms of HQ and CA, respectively) play roles in benzene-

induced toxicity [10,14,60–62]. The fact that levels of

the other three metabolites (MA, SPMA, and PH) were

also lower among participants with NQO1*2 (rs1800566:

C-T), suggests a more general antioxidant role for

NQO1 [20]. Furthermore, the interaction effects be-

tween NQO1*2 (rs1800566: C-T) and both benzene

exposure and smoking status point to induction of NQO1
by reactive benzene metabolites or other reactive species

[20,63,64]. Such induction could come about via either

the antioxidant or xenobiotic response element in the

NQO1 promoter region [19,65,66]. We found that NQO1*2
(rs1800566: C-T) but not NQO1*3 (rs4986998: C-T)

was associated with lower levels of benzene metabolites

and that single nucleotide polymorphisms (SNPs) of

MPO appeared not to affect metabolism in liver.

Considering our previous report of the presence of

greater hematotoxicity in workers having the combination

of variant NQO1*3 (C/T, less active) and wild-type MPO
(A/A, more active) [8], the present results are interesting.

They probably point to differences in the balance

between NQO1 and MPO activities in liver (where

metabolites are produced) and bone marrow (where

metabolites are activated and deactivated in target

hematopoietic cells) [60,67,68].

We observed significant effects of CYP2E1 (rs2031920:

C-T) variants on levels of MA, PH, and HQ (Tables 3,

5, and 7). Controversy has surrounded the relationship

between the genotype and phenotype of CYP2E1, an

important gene that metabolizes many small molecules of

toxicological interest, including benzene [21,22,69–79].

There is some evidence that a variant type CYP2E1
(rs2031920: C-T, also referred to as RsaI – ), is

associated with decreased CYP2E1 activity in vivo
[33,52,71,73,80,81]. In the present study, we found that

participants with variant CYP2E1 (rs2031920: C-T)
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produced lower levels of benzene metabolites at a given

benzene exposure than homozygous wild-types, and that

the effect was accentuated at higher benzene levels due

to gene-environment interactions. The difference in

metabolite levels between homozygous wild-types and

homozygous variants was detected at benzene exposures

in the range of 0.1–2 p.p.m. for HQ, PH and MA

(Tables 3, 5 and 7 and Fig. 2a). This interaction effect

could point to induction CYP2E1 (rs2031920: C-T) by

benzene exposure, or to more rapid saturation of

metabolism among homozygous variant individuals [22].

Therefore, our results substantially support evidence

from previous studies [33,52,71,73,80,81] that CYP2E1
(rs2031920: C-T) mutations functionally reduce the

metabolism of CYP2E1 substrates.

Individuals with variant alleles of EPHX1 (rs1051740:

T-C) produced lower levels of CA in our study (Table 6

and Fig. 2f). EPHX1 enzymes hydrolyze epoxides through

the formation of hydroxyl alkyl-enzyme intermediates

[82]. Although EPHX1 should logically be involved in

benzene metabolism, notably in catalyzing BO to the

dihydrodiol, the functional role of this enzyme has been

ambiguous in benzene-exposed participants [56,83]. Two

polymorphisms have been identified; one, in exon 3,

decreased enzymatic activity 50% in vitro, whereas the

other, in exon 4, increased activity 25% [84]. Our findings

that workers with variant allele(s) of EPHX1 (rs1051740:

T-C) had lower levels of CA than homozygous wild-

types, whereas those with at least one variant of EPHX1
(rs2234922: A-G) had marginally higher CA levels,

support the in-vitro results. We also detected significant

interactions between EPHX1 (rs1051740: T-C) and

both benzene exposure and smoking status. The gene-

smoking interaction tended to accentuate differences in

CA levels between smoking individuals who had different

alleles of EPHX1 (rs1051740: T-C) and to obscure

effects among nonsmokers (Fig. 2f). The gene-exposure

interaction produced differences in CA levels that could

be distinguished between smokers having homozygous

wild-types and variant-types of EPHX1 (rs1051740:

T-C) at benzene concentrations above 1 p.p.m. Our

results are intriguing in light of recent epidemiologic

studies indicating that, among smokers, fast EPHX1
metabolizers had greater risks of colorectal adenomas

[85,86] than slow metabolizers. Interestingly, fast meta-

bolizers of EPHX1 (rs2234922: A-G) also had marginally

higher levels of SPMA at benzene concentrations above

6 p.p.m. (P < 0.10). Although the mechanism for produc-

tion of SPMA is not yet established [87,88], the apparent

effect of EPHX1 on SPMA levels may offer clues regarding

formation of this minor benzene metabolite [82].

Among the GST isozymes, both GSTM1 and GSTT1
affected the production of SPMA (Table 4, Fig. 2e), with

individuals having variant forms of these enzymes

producing lower levels. Of the two isozymes, GSTT1

produced more substantial effects, based upon evidence

ratios [45] (data not shown), and produced different

profiles for each combination of alleles (Fig. 2e). This

finding is consistent with previous studies [24–26]. No

effect of GSTP1 (rs947894: A-G) was detected.

Finally, it is worth commenting upon the amounts of

variability in metabolite levels that were explained

by the observed genetic effects and the magnitudes of

interindividual differences in metabolism that can be

attributed to particular genes. The GLM + NS models

summarized in Tables 3–7 had R2 (%) values of 85.0 for

MA, 82.0 for SPMA, 64.8 for PH, 57.2 for CA, and 72.6 for

HQ, among which benzene exposure and nongenetic

covariates explained between 53 and 84% of the

variability in metabolite levels. The corresponding

percentages of variability explained collectively by all

significant genes and gene-environment interactions were

1.0 for MA, 4.9 for SPMA, 3.1 for PH, 3.4 for CA, and 1.8

for HQ. Thus, although many significant genetic effects

were detected, they collectively contributed rather little

to the explained variation in benzene metabolism.

Regarding interindividual differences in metabolism that

would be expected for a given genetic polymorphism,

Table 8 lists the ratios of predicted metabolite levels for

homozygote variants to homozygous wild-types, based

upon least-squares means of the models summarized in

Tables 3–7. These ratios represent the mean fold ranges

for variant/referent that would be expected for each

genetic polymorphism after adjusting for benzene ex-

posure as well as covariates and other genetic effects. The

values shown in Table 8 suggest that interindividual

differences in metabolite production were generally

rather modest, with most ratios lying between about 0.3

and 2.0. Indeed, differences as great as two-fold to 3.5-

fold would only be anticipated for most metabolite–gene

combinations when persons were exposed to very high

benzene concentrations (100 p.p.m.). The exception to

this rule is the large effect of GSTT1 on SPMA

production, where homozygous referents would typically

have SPMA levels three-fold to eight-fold greater than

those of homozygous variants. This large fold range

undoubtedly contributed to the earlier reports of

significant effects of GSTT1 on SPMA levels [24–26].

In conclusion, we used GLM + NS regression to detect

numerous effects of particular metabolizing genes and

gene–environment interactions on levels of benzene

metabolites in 386 Chinese workers. Of the nine genetic

polymorphisms investigated, NQO1*2 (rs1800566: C-T)

affected all five metabolites, CYP2E1 (rs2031920: C-T)

affected all metabolites but CA, EPHX1 (1051740: T-C

or 2234922: A-G) affected CA and SPMA, and GSTT1
and GSTM1 affected SPMA. Significant interactions

were detected between benzene exposure and all four

genes [including CYP2E1 (rs2031920: C-T), NQO1*2
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(rs1800566: C-T), EPHX1 (2234922: A-G), and

GSTT1] and between smoking status and NQO1*2
(rs1800566: C-T) and EPHX1 (rs1051740: T-C).

Results are generally consistent with previous reports of

associations between benzene hematotoxicity and spe-

cific gene mutations and provide additional evidence

regarding functionality of SNPs of NQO1, CYP2E1, and

EPHX1 in humans exposed to benzene.
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