
Statistical Applications in Genetics
and Molecular Biology

Volume 6, Issue 1 2007 Article 28

A Comparison of Methods to Control Type I
Errors in Microarray Studies

Jinsong Chen∗ Mark J. van der Laan†

Martyn T. Smith‡ Alan E. Hubbard∗∗

∗Lawrence Berkeley National Laboratory, jchen@lbl.gov
†University of California, Berkeley, laan@berkeley.edu
‡University of California, Berkeley, martynts@berkeley.edu
∗∗University of California, Berkeley, hubbard@stat.berkeley.edu

Copyright c©2007 The Berkeley Electronic Press. All rights reserved.



A Comparison of Methods to Control Type I
Errors in Microarray Studies

Jinsong Chen, Mark J. van der Laan, Martyn T. Smith, and Alan E. Hubbard

Abstract

Microarray studies often need to simultaneously examine thousands of genes to determine
which are differentially expressed. One main challenge in those studies is to find suitable multi-
ple testing procedures that provide accurate control of the error rates of interest and meanwhile
are most powerful, that is, they return the longest list of truly interesting genes among competi-
tors. Many multiple testing methods have been developed recently for microarray data analysis,
especially resampling based methods, such as permutation methods, the null-centered and scaled
bootstrap (NCSB) method, and the quantile-transformed-bootstrap-distribution (QTBD) method.
Each of these methods has its own merits and limitations. Theoretically permutation methods can
fail to provide accurate control of Type I errors when the so-called subset pivotality condition is
violated. The NCSB method does not suffer from that limitation, but an impractical number of
bootstrap samples are often needed to get proper control of Type I errors. The newly developed
QTBD method has the virtues of providing accurate control of Type I errors under few restrictions.
However, the relative practical performance of the above three types of multiple testing methods
remains unresolved. This paper compares the above three resampling based methods according to
the control of family wise error rates (FWER) through data simulations. Results show that among
the three resampling based methods, the QTBD method provides relatively accurate and powerful
control in more general circumstances.

KEYWORDS: microarrays, experiment-wise error rates, permutation methods, bootstrap, ad-
justed p-values



1 Introduction

Microarray data analysis typically starts from testing thousands of hypothe-
ses in order to identify differentially expressed genes among biological sam-
ples that differ by some trait or treatment. As microarray technologies have
become more popular, many methods have been developed to evaluate and
to find patterns from microarray data sets, such as algorithms referred to
as multiple testing procedures (MTP), which first evaluate the association
between gene expressions and variables of interest on a gene by gene basis
and then derive larger experiment-wise inference over the entire set of genes
or tests. To account for dependence in expression among different genes,
resampling based methods have been used, such as permutation methods
(Westfall and Young (1993)), the null-centered and scaled bootstrap (NCSB)
method (Pollard and van der Laan (2003), Dudoit et al. (2004)) and the
quantile-transformed-bootstrap-distribution (QTBD) method (van der Laan
and Hubbard (2006)). Theoretically, permutation methods will fail asymp-
totically when certain conditions, which do not affect the asymptotic validity
of the bootstrap-based methods, are unsatisfied. However, for a finite num-
ber of resamples, the NCSB method often has poor performance due to the
difficulty of using the empirical distribution to accurately estimate the far
right tail of a sampling distribution.

This paper offers some practical guidance for researchers to choose suit-
able multiple testing methods for microarray data analysis and to provide
some evidence of the superiority of particular methods under particular sce-
narios through data simulations. The simulation studies are based on two-
sample problems, which are common in microarray data analysis. Although
our conclusions are obtained according to the study of two-sample problems,
they can be applied more broadly to MTP issues in microarray data analysis.

The paper is organized as follows. Section 2 briefly describes two-sample
problems and three resampling based methods. Section 3 shows a series of
simulation studies used to evaluate the performance of these estimators. Sec-
tion 4 describes an application of the competing methods to microarray data,
where the goal was finding genetic markers of exposure to the cancer-causing
chemical benzene in an occupational setting in China. A short discussion
section is provided in section 5.
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2 Methods

2.1 Errors in Multiple Testing

In general, there are two relevant performance measures (types of errors)
considered by multiple testing procedures. The first is the rate of false pos-
itives or Type I errors, caused by rejecting true null hypotheses; the second
is the rate of false negatives or Type II errors caused by accepting false
null hypotheses. Let H0j be the null hypothesis for the j − th gene, where
j = 1, 2, · · · , p and p is the total number of genes under study. Let Rn =
{j : H0j is rejected, j = 1, 2, · · · , p}, H0 = {j : H0j is true, j = 1, 2, · · · , p},
H1 = {j : H0j is false, j = 1, 2, · · · , p}. Thus the number of Type I er-
rors is given by Vn = |Rn ∩ H0|, and the number of Type II errors is given
by U = |Rc

n ∩ H1|. Both Vn and Un are random variables that depend on
an unknown data-generating distribution. There are many different ways to
quantify the Type I and Type II errors. This study focuses on the family-wise
error rate (FWER) to measure the Type I errors, which are defined as the
probability that at least one Type I error occurs, i.e. FWER = Pr(Vn ≥ 1).
We use the average power to measure the Type II error, which is defined
as the expected proportion of accepted false null hypothesis and is given
by E[|Rn ∩ H1|]/|H1|. Though there are other error rates, such as the less
conservative false discovery rate, we concentrate on the FWER, for which
re-sampling based methods have been more fully developed.

2.2 Two-sample Problems

Let Xki(j) be the expression value of the ith array (e.g., biological repli-
cate) within group k for the jth gene. Suppose there are p genes (typi-
cally in the tens of thousands) and n = n1 + n2 arrays; thus, for gene j,
the n1 gene expressions are X11(j), X12(j), · · · , X1n1(j) from Population 1
and n2 gene expressions X21(j), X22(j), · · · , X2n2(j) from Population 2. Let
µ1(j) and µ2(j) denote the means of vectors of random variable Xk·(j) =
(Xk1(j), Xk2(j), . . . , Xknk

(j)) in Populations k = 1 and k = 2, respectively.
A set of null hypotheses related to the mean expressions of the two groups
is given as follows:

H0,j : µ1(j) = µ2(j), j = 1, 2, · · · , p. (1)

A possible two-sample t-statistic for testing the above set of hypotheses
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is given by:

Tn(j) =
X̄2(j)− X̄1(j)√

S2
2(j)/n2 + S2

1(j)/n1

, (2)

where X̄1(j) and X̄2(j) represent the averaged expression levels of gene j in
Population 1 and 2, respectively, and S2

1(j) and S2
2(j) represent their corre-

sponding sample variances. In the following studies, we will apply four differ-
ent methods to control FWER for the set of p hypotheses given in Equation 1,
which include three resampling based methods and one traditional marginal
p-value based method (the Bonferroni procedure).

2.3 Permutation Method

Permutation methods, described in detail by Westfall and Young (1993), are
an attempt to control Type I error rates while accounting for the dependence
between the p test statistics in order to increase the power of the procedure
(i.e. finding more true positives while still properly controlling the rate of
false positives). As a contrast, the Bonferroni procedure for controlling the
rate of false positives makes the most conservative assumption of indepen-
dence of those test statistics. The procedure allows the multiple testing
procedure to use only the marginal p-values from the test statistics (2), i.e.
simply rejecting the null hypothesis if the p-value is less than α/p, where α is
the desired Type I error rate. Such conservativeness of the Bonferroni method
comes from two sources. First, it assumes that all the null hypotheses are
true(step-down methods attempt to improve the power of such procedures
by allowing for some false null hypotheses). Second, it ignores the potential
correlation among test statistics calculated from microarray data.

The limitation of the independence assumption in the Bonferroni proce-
dure can be seen intuitively from the following extreme case. Suppose, for
every repeated random sample of the data from the target population, all
the t-statistics have precisely equal p-values. In essence, there is only one
effective test statistic, and thus the cut-off should be determined by divid-
ing the desired FWER not by p, the number of tests, but by 1. As the
dependence becomes less extreme, the principal still holds. If one could use
the dependence structure, then one should be able to derive a multiple test-
ing procedure that provides tighter control under more general situations.
Because gene expressions from different genes on the same sample can be
strongly correlated (e.g. co-regulated), deriving multiple testing procedures
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that can take advantage of the joint distribution (statistical dependence) of
test statistics becomes very compelling.

Typical multiple testing procedures for microarray data analysis entail
two steps. First, genes are ranked by the raw p-values from the smallest
to largest. Second, adjusted p-values are reported as opposed to a simple
reject/accept indicator for each gene. The adjusted p-values can be thought
of as the estimated error rates that results if one rejects the null hypotheses
for test statistics that are bigger than the one on that row, hence all the
genes above that one on the ordered list. Below is an algorithm for deriving
adjusted p-values for permutation MTP methods ( Dudoit et al. (2003)).

1. Compute t-statistics using (2) to get Tn(j), where j = 1, 2, · · · , p, and
let b = 1.

2. Permute the n columns of the data matrix X = {Xki(·), k = 1, 2, i =
1, 2, · · · , nk}, where vector Xki(·) = (Xki(1), Xki(2), · · · , Xki(p))T , by
ignoring the group numbers.

3. Compute test statistics T b
n(j), j = 1, 2, · · · , p from the permuted data

matrix and let b = b + 1.

4. Repeat Steps 2 and 3 if b < B and go to Step 5, otherwise. The above
procedure will produce a p×B test statistics matrix T#

n = {T b
n(j), j =

1, 2, · · · , p, b = 1, 2, · · · , B}.

5. Use the approach called maxT to control the FWER. For each column
of the T#

n matrix, calculate the maximum absolute value of the test
statistics by T b

max = maxj(|T b
n(j)|), j = 1, 2, · · · , p. Calculate adjusted

p-values based on the original test statistic Tn(j), j = 1, 2, · · · , p, and
the matrix T#

n using the following formula: Adjpvalue(j) ≡ P̂ rob(T b
max ≥

|Tn(j)|), or simply the proportion of maximum t-statistics that are not
less than the observed test statistic.

The above method for computing adjusted p-values has limitation be-
cause it requires the the so-called subset pivotality condition. By definition,
this requires that the true covariance matrix of the test statistics for the true
nulls is asymptotically equal to the covariance matrix of the test statistics
implied by the chosen null data distribution (in Westfall and Young (1993),
the permutation distribution). In the two-sample problem, this is satisfied
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when either the covariance matrices of the test statistics in the two popula-
tions are equal or the sample sizes in the two groups are equal. There are
situations, such as all possible pair-wise correlations of genes, where the sub-
set pivotality requirement can not be satisfied and this limitation motivated
the development of new multiple testing approaches.

2.4 NCSB Method

A resampling based method, originally proposed in Pollard and van der Laan
(2003) and further expanded in Dudoit et al. (2004), suggests using the boot-
strap (i.e. randomly resampling arrays with replacement) as a way to create
an appropriate joint null distribution of test statistics. In bootstrap meth-
ods, one approximates the unknown data-generating distribution by using
the empirical distribution obtained from sampling with replacement from
the original data. Since these methods preserve the dependence structure
of original data without assumptions about the data-generating distribu-
tion, they require fewer assumptions than permutation methods. The way
to re-draw samples depends on the specific experimental design. For typical
microarray data analysis, there are a certain number of arrays, by design,
in the control and experimental subgroups. To preserve such designs during
the re-sampling procedure, arrays are sampled with replacement within each
subgroup. The detailed procedures of obtaining test statistics matrices are
given as follows:

1. Let b = 1.

2. Randomly draw n1 columns from p × n1 matrix X1 = {X1i(·), i =
1, 2, · · · , n1} and n2 columns from p × n2 matrix X2 = {X2i(·), i =
1, 2, · · · , n2} with replacement.

3. Compute test statistics T b
n(j), j = 1, 2, · · · , p from the re-sampled data

matrix and let b = b + 1.

4. Repeat Steps 2 and 3 if b < B and otherwise, stop. The calculated
test statistics form a p × B matrix T#

n = {T b
n(j), j = 1, 2, · · · , p, b =

1, 2, · · · , B}.

Similar to permutation methods, the matrix T#
n is an estimate of the

dominating multivariate null distribution of the test statistics. As discussed
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in Pollard and van der Laan (2003), the empirical correlation of test statistics
in the matrix provides an estimate of the dependence among them. However,
the test statistics in matrix T#

n need to be centered by the corresponding null
mean value, and can be scaled by its corresponding null variance. Let λ0(j)
and τ0(j) be the known null mean and variance of the test statistics for gene
j. The null-centered and scaled bootstrap null distribution is given by

Zb
n(j) = (T b

n(j)− E[T b
n(j)])

√
min

(
1.0,

τ0(j)

V ar[T b
n(j)]

)
+ λ0(j). (3)

For the two-sample problems, typically the null mean value λ0(j) = 0 and
the null variance (based on the t-distribution) is τ0(j) = df/(df − 2), where
df is the degrees of freedom, for all j. As discussed in Dudoit et al. (2004),
the re-scaling adjustment to the original test statistics does not affect the
asymptotic control of Type I errors but can increase the power. The main
advantage of the NCSB method over permutation methods is they do not
need restrictions on the joint distribution of the test statistics, such as the
subset pivotality restriction. However, a limitation from which the NCSB
method suffers relative to permutation methods is that for a large number of
tests (i.e. big p), a very large number of bootstrap resamplings is typically
is needed to get accurate adjusted p-values, that is, to estimate the distant
tails of the maximum null-centered, scaled test statistics.

2.5 QTBD Method

The QTBD method, proposed by van der Laan and Hubbard (2006), is a
modification of the original bootstrap procedure by using knowledge about
the marginal null distribution (e.g., a t-distribution with df degrees of free-
dom for two-sample problems). The primary goal of the methods is to remedy
practical performance problems of the NCSB method. The QTBD method
shares the main idea with the NCSB, by trying to take advantage of the
possible dependence among test statistics. However, instead of adjusting the
null bootstrap distribution to have the correct marginal null mean and vari-
ance as in the NCSB method, the QTBD method transforms the bootstrap
distribution to insure that each of the marginal test statistic distributions
has the desired dominating null distribution.

Suppose T b
n is the original bootstrap null distribution matrix and let Q0j,

j = 1, 2, · · · , p, be the known marginal null distributions. In some cases, such
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as in this study, they are the same for all the test statistics, j = 1, . . . , p.
The QTBD method is given by:

T̃ b
n(j) = Q−1

0j (Qb
nj(T

b
n(j))), j = 1, 2, · · · , p, (4)

where Qb
nj(t) is the empirical bootstrap distribution for the jth test and

Q−1
0j (x) is the inverse probability distribution for the desired marginal null

distribution (for instance if x = 0.5, then Q−1
0j (x) is the median of the null

distribution). The benefits of such a modification are that the procedure
both takes advantage of the dependence among test statistics (in this case,
the dependence is preserved solely through the ranks) and the marginal (row
by row) distribution is the optimal chosen null distribution. This latter
property should gain power relative to the original bootstrap method and
still does not rely on the subset pivotality assumption of the permutation
methods.

For implementation we used a slightly modified technique, which appears
to work better in practice. This modification maps the bootstrap distribu-
tion into the empirical (as opposed to the actual) distribution of samples
randomly drawn from the desired marginal null distribution. Specifically,
suppose one has B numbers of bootstrap statistics Tn(j)b, b = 1, 2, · · · , B
for row (gene), j. First, randomly generate B samples q1, q2, · · · , qB, from
the given marginal distribution function Q0j and sort them in ascending or-
der: q(1), q(2), · · · , q(B). Second, find the rank r1, r2, · · · , rB of the original
bootstrap statistics T b

nj from the smallest to the largest values. The quantile
transformed null distribution thus is given by:

T̃ b
n(j) = q(rb), where b = 1, 2, · · · , B. (5)

Simulation studies have shown that this mapping method is not only com-
putationally fast but it also provides good finite sample error control.

3 Simulation Study

This section compares the practical performance of the three MTP methods
described in the proceeding section under various data-generating distribu-
tions. Although in theory the bootstrap methods (the NCSB and QTBD
methods) should perform superior asymptotically to the permutation method
when the assumptions of the permutation method are violated, we want to
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examine whether the QTBD procedure can be more generally recommended
in practice through simulation studies. Specifically, we performed a set of
simulations where the numbers of true and false hypotheses are known, and
we evaluate both the accuracy and power of each competing MTP method
as the subset pivotality condition is met and is violated.

3.1 Synthetic Cases

Suppose gene expressions X1i(·) (i = 1, 2, · · · , n1) for Population 1 has the
p−variate normal distribution with mean vector µ1 and variance-covariance
matrix Σ1, and gene expressions X2i(·) (i = 1, 2, · · · , n2) for Population 2
has the p−variate normal distribution with mean vector µ2 and variance-
covariance matrix Σ2. By varying vectors µ1 and µ2 and matrices Σ1 and Σ2,
we form four different synthetic cases.

3.1.1 Case 1a: Balanced design with complete null hypotheses

Let p = 100, n1 = n2 = 15, µ1j = µ2j = 0.0, σ2
1j = σ2

2j = 1.0, where j =
1, 2, · · · , p. The pairwise correlation between the expression of genes within
Populations 1 and 2 in this simulation are zero, that is the gene expressions
within an array are independent. In this case, all the null hypotheses are
true and the joint distribution of the test statistics, Tn(·), satisfies the subset
pivotality condition.

3.1.2 Case 2a: Unbalanced design with complete null hypotheses

Let p = 100, n1 = 5, n2 = 25, µ1j = µ2j = 0.0, σ2
1j = 0.1, σ2

2j = 5.0,
where j = 1, 2, · · · , p. We assigned a different correlation parameter (ρ) of
gene expressions for genes within Populations 1 (ρ1) and 2 (ρ2). Specifically,
ρ1 = 0.0 and ρ2 = 0.6 and the variance-covariance matrices are defined by
the model Σ1 = {aij} and Σ2 = {bij}, where aij = σ2

1ρ
|i−j|
1 and bij = σ2

2ρ
|i−j|
2 .

In this case, all the null hypotheses are still true but the data-generating
distribution results in an extreme violation of the subset pivotality condition.

3.1.3 Case 1b: Balanced design with partial null hypotheses

To compare the power of the three competing MTPs, we modified Case 1a by
having false null hypotheses for j = 1, 2, · · · , 10 (i.e. µ1j−µ2j = 2.0), whereas
the null hypotheses are true for j = 11, 12, · · · , 100 (i.e. µ1j − µ2j = 0.0).
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3.1.4 Case 2b: Unbalanced design with partial null hypotheses

Similar to Case 1b, we modified Case 2a to get Case 2b by simulating false
null hypotheses for the first 10 rows (i.e. µ1j−µ2j = 2.0, for j = 1, 2, · · · , 10),
and true null hypotheses for all remaining rows.

We conduct 2,000 simulations for each of the above four cases by following
the steps given below:

1. Generate synthetic data X1i(·) ∼ N(µ1Ip, Σ1) for i = 1, 2, · · · , n1 and
X2i(·) ∼ N(µ2Ip, Σ2) for i = 1, 2, · · · , n2.

2. Obtain null distributions of test statistics using each of the three re-
sampling based methods given in Section 2.

3. Obtain adjusted p-values using the single-step methods for Cases 1a
and 2a and the step-down methods (see van der Laan et al. (2004) for
details of the step-down procedures for deriving adjusted p-values from
the null distribution matrix for any resampling based procedure) for
Cases 1b and 2b.

4. Count the number of false rejections and the number of false accep-
tances for the cutoff values of α = 0.05 and α = 0.10.

5. Repeat Steps 1–4 2000 times.

3.2 Simulation Results

Table 1 summarizes the simulated results of Case 1a for controlling FWERs
when the cutoff values are equal to 0.05 and 0.10, respectively. As shown
in the table, permutation methods provide good control of Type I error
rates (i.e. the simulated FWERs are close to their corresponding nominal
values) because the subset pivotality condition is satisfied, and the simple
Bonferroni method also does well for this data-generating distribution as the
test statistics are in fact independent. The NCSB method provides relatively
poor results for FWER control, even when the number of bootstrap samples
increases to B = 10, 000. However, for QTBD method, the simulation results
are as good as the ones obtained from permutation methods. This is because
the marginal distribution after quantile transformation of testing statistics
is the t-distribution with the degree of freedom of n− 2 = 28, which in this
case is the true distribution of test statistics.
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Table 1: Comparison of FWER using different methods for Case 1a, in which
n1 = 15, n2 = 15, h1 = 0, h0 = 100, p = 100, µ1 = µ2 = 0.0, σ1 = σ2 = 1.0,
and ρ1 = ρ2 = 0.0.

Resampling α = 0.05 α = 0.10
Methods B (FWER) (FWER)
Permutation

1000 0.0515 0.1050
3000 0.0530 0.1035
5000 0.0545 0.1085
10000 0.0515 0.1100

NCSB
1000 0.0365 0.0845
3000 0.0440 0.0835
5000 0.0255 0.0775
10000 0.0345 0.0895

QTBD
1000 0.0570 0.1125
3000 0.0580 0.1190
5000 0.0490 0.1060
10000 0.0560 0.1160

Bonferroni
0.0515 0.0945

Table 2 shows the results of Cases 2a, where the subset pivotality condi-
tion is violated because n1 6= n2 and σ2

1 6= σ2
2, and the correlation structures

within Populations 1 and 2 are very different, as discussed in Pollard and
van der Laan (2003). Theoretically, the permutation methods should pro-
vide inaccurate control of FWERs. This is verified by the results that suggest
overly conservative control of Type I error rates by an order of magnitude.
Similar to Case 1a, the NCSB method again has poor performance, but better
than the permutation method. The Bonferroni adjustment is overly conser-
vative as well in this case because of the strong dependence among the test
statistics. However, the QTBD method still provides accurate control for
FWERs, taking advantage of the dependence in a protected way (protected
as long as the marginal distribution is correctly specified).
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Table 2: Comparison of FWER using different methods for Case 2a, where
n1 = 5, n2 = 25, h1 = 0, h0 = 100, µ1 = µ2 = 0.0, σ1 = 0.1, σ2 = 5.0,
ρ1 = 0.0, and ρ2 = 0.6.

Resampling α = 0.05 α = 0.10
Methods B (FWER) (FWER)
Permutation

1000 0.0030 0.0100
3000 0.0025 0.0105
5000 0.0025 0.0120
10000 0.0025 0.0110

NCSB
1000 0.0350 0.0880
3000 0.0300 0.0780
5000 0.0350 0.0835
10000 0.0340 0.0875

QTBD
1000 0.0635 0.1285
3000 0.0475 0.0960
5000 0.0505 0.1095
10000 0.0455 0.0995

Bonferroni
0.0130 0.0245

Table 3 shows the results of Case 1b, where there are false nulls (true
positives), i.e., among the 100 genes, the first 10 null hypotheses are false with
mean difference of ∆ = 2.0. As expected, the relative power of each multiple
testing method for finding truly differentially expressed gene is very similar.
However, as shown in Table 4, when the subset pivotality condition is violated
and test statistics across genes present strong correlations, the average power
for the permutation approach is very low (only 26%), compared to 58, 65 and
62% for the NCSB, QTBD and Bonferroni methods, respectively.

Although the simulated results of the above four cases seem not very
sensitive to the number of either permutations or bootstrap sampling when
the total number of genes are 100, we expect that as p, the number of tests
gets larger, the number of bootstrap runs becomes more important because
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Table 3: Comparison of FWER using different methods for Case 1b, in which
n1 = 15, n2 = 15, h1 = 10, h0 = 90, p = 100, µ1 = µ2 = 0.0, σ1 = σ2 = 1.0,
and ρ1 = ρ2 = 0.0.

Resampling α = 0.05 α = 0.10 Average
Methods B (FWER) (FWER) Power
Permutation

1000 0.0545 0.1030 0.92
3000 0.0535 0.1055 0.92
5000 0.0535 0.1060 0.93
10000 0.0535 0.1070 0.93

NCSB
1000 0.0350 0.0805 0.90
3000 0.0430 0.0830 0.90
5000 0.0270 0.0775 0.90
10000 0.0355 0.0855 0.90

QTBD
1000 0.0510 0.1060 0.93
3000 0.0450 0.1025 0.92
5000 0.0530 0.1075 0.93
10000 0.0530 0.1145 0.93

Bonferroni
0.0455 0.0850 0.92

more extreme tail probabilities must be estimated from the bootstrap distri-
bution to control at a fixed FWER (say 0.05). Since the estimation of the
marginal tail probabilities using the NCSB method is much more sensitive to
the number of bootstrap samples than the QTBD method, it is a compelling
alternative.
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Table 4: Comparison of FWER using different methods for Case 2b, where
n1 = 5, n2 = 25, h1 = 10, h0 = 90, µ1 = µ2 = 0.0, σ1 = 0.1, σ2 = 5.0,
ρ1 = 0.0, and ρ2 = 0.6.

Resampling α = 0.05 α = 0.10 Average
Methods B (FWER) (FWER) Power
Permutation

1000 0.0025 0.0080 0.26
3000 0.0025 0.0090 0.26
5000 0.0020 0.0090 0.26
10000 0.0020 0.0090 0.26

NCSB
1000 0.0335 0.0875 0.59
3000 0.0285 0.0725 0.59
5000 0.0340 0.0810 0.57
10000 0.0335 0.0865 0.58

QTBD
1000 0.0540 0.1110 0.65
3000 0.0435 0.0980 0.64
5000 0.0535 0.1180 0.65
10000 0.0510 0.1090 0.65

Bonferroni
0.0125 0.0245 0.62

4 Real Case Study: Occupational exposure

to Benzene

4.1 Data Description

We used the competing multiple testing procedures to analyze Affymetrix
microarray data, which were collected (as part of a study of benzene expo-
sure) from blood samples of a population of shoe-factory workers in China.
Benzene exposure, an industrial chemical and component of gasoline, is an es-
tablished potential factor in developing leukemia. However, the mechanisms
of benzene-induced hematotoxicity and leukemogenesis remain unclear, as
does the risk benzene poses at low levels of exposure. The purpose of the
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Table 5: Important genes found by various multiple testing methods based
on Benzene microarray data

Cutoff Values Bonferroni Permutation NCSB QTBD
α = 0.05 3 4 0 4
α = 0.10 4 7 0 13

benzene data analysis is to shed light on these mechanisms and thus better
understand the risk that benzene poses, by examining the effects of benzene
exposure on peripheral blood mononuclear cell (PBMC) gene expression.
RNA was isolated from the PBMC of 8 high-exposed workers along with
8 unexposed controls (Forrest et al. (2005)). Given the data is balanced
in this case, the subset pivotality assumption of the permutation method is
satisfied. Because a two-sample t-test for each gene was performed, the dom-
inating marginal null distribution used by the QTBD method, for all genes,
is the t-distribution with 14 degrees of freedom.

4.2 Results of multiple testing

Table 5 summarizes the numbers of important genes found using four different
multiple testing methods according to the Affymetrix data set. We report
the number of genes that are “significant” after control FWER using both
the nominal values of α = 0.05 and 0.10. Several observations can be made
from Table 5:

1. Bonferroni methods provide small numbers of important genes.

2. The NCSB method finds no significantly differentially expressed genes.

3. Relative to the permutation method, QTBD method finds similar num-
bers of genes, although it appears to be less conservative.

Figure 1 shows the adjusted p-values versus the ordered genes for the
benzene data. The adjusted Bonferroni p-values reach 1.0 quickly down
the list. The adjusted p-values of other three resampling based methods
more gradually reach the maximum value of 1.0. In this case, the additional
potential power apparent from the QTBD method at an FWER=0.10 could
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Figure 1: Adjusted p-values of various multiple testing methods, where the
black, red, blue, and green lines show the p-values obtained using the Bon-
ferroni, permutation, NCSB and QTBD testing methods, respectively.

be artificial, as it is based on the strong assumption that the marginal null
distribution of the test statistics for all genes is t-distributed with 14 degrees
of freedom, which, given the relatively small sample size, relies on a normality
assumption on the original expression data.

5 Discussion

We have compared the practical performance of permutation methods, null-
centered and scaled bootstrap (NCSB) method and the quantile-transformed-
bootstrap-distribution (QTBD) method for controlling FWER in multiple
testing procedures based on both synthetic and real microarray data sets,
and compared the results with those obtained from traditional marginal p-
value methods, specifically the Bonferroni’s method. In short, the simulation
results suggest that the QTBD method does not do worse than permutation
methods even when the subset pivotality condition is met and do better
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(sometimes substantially better) when it is not met. From synthetic data
analyses, we found the QTBD method provides accurate and relatively pow-
erful control of FWER, by taking advantage of both the dependence struc-
ture and knowledge about the marginal null distribution. Given the easy
implementation of the QTBD method, we expect that it should have wide
applicability in large scale genomic studies and in other experiments that
involve a large number of tested hypotheses.
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