Assessing PFAS persistence and environmental mobility

December 13, 2019

André Algazi
Chief, Chemical-Product Evaluation Section,
Safer Consumer Products (SCP) Program
Can PFASs be grouped according to their properties?

- Environmental persistence
- Bio-persistence
- Environmental mobility
The ~5,000 PFASs can be grouped into 4 subclasses:

Wang et al. (2017) Environ Sci Technol
Over 80 percent of PFASs may degrade to PFAAs

http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/
The P-sufficient approach

- "if a chemical is highly persistent, its continuous release will lead to continuously increasing contamination irrespective of the chemical's physical–chemical properties."

- "these increasing concentrations will result in increasing probabilities of the occurrence of known and unknown effects and that, once adverse effects are identified, it will take decades, centuries or even longer to reverse contamination and therefore effects."

Biological persistence appears to vary with chain length

- Longer-chain PFASs are:
 - PFSAs with 6 or more perfluorinated carbons;
 - PFCAs, PFPAs, and PFPiAs with 7 or more perfluorinated carbons; and
 - their precursors.

- Key difference between longer- and shorter-chain PFASs is the biological half-life and bioaccumulation potential.

- The concept is less clear for fluorinated ethers (PFECAs, PFESAs).
Table 1-1. Summary of Estimated Elimination Half-lives for Select Perfluoroalkyls

<table>
<thead>
<tr>
<th></th>
<th>Humans</th>
<th>Nonhuman primates</th>
<th>Rats(^a)</th>
<th>Mice(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOA</td>
<td>8 years</td>
<td>20.1–32.6 days</td>
<td>Males: 44–322 hrs</td>
<td>731–1,027 hrs</td>
</tr>
<tr>
<td></td>
<td>(Olsen et al. 2007a)</td>
<td>(Butenhoff et al. 2004c)</td>
<td>Females: 1.9–16.2 hrs</td>
<td></td>
</tr>
<tr>
<td>PFOS</td>
<td>5.4 years</td>
<td>110–170 days</td>
<td>179–1,968 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Olsen et al. 2007a)</td>
<td>(Chang et al. 2012; Seacat et al. 2002)</td>
<td></td>
<td>731–1,027 hrs</td>
</tr>
<tr>
<td>PFHxS</td>
<td>8.5 years</td>
<td>87–141 days</td>
<td>Males: 382–688 hrs</td>
<td>597–643 hrs</td>
</tr>
<tr>
<td></td>
<td>(Olsen et al. 2007a)</td>
<td>(Sundström et al. 2012)</td>
<td>Females: 1.03–41.28 hrs</td>
<td></td>
</tr>
<tr>
<td>PFBuS</td>
<td>665 hours</td>
<td>8.0–95.2 hours</td>
<td>2.1–7.42 hours</td>
<td></td>
</tr>
<tr>
<td>PFBA</td>
<td>72 hours</td>
<td>40.3–41.0 hours</td>
<td>1.03–9.22 hours</td>
<td>2.79–13.34 hours</td>
</tr>
<tr>
<td></td>
<td>(Chang et al. 2008b)</td>
<td>(Chang et al. 2008b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Estimated based on published data.
Intermediates may have higher biopersistence than their precursors and final degradation products

5:3 FTCA, a metabolite of 6:2 FTOH, has highest internal exposure and slowest clearance based on pharmacokinetic data from rat and human studies (Kabadi et al. 2018).
PFASs are widespread in...

- Environmental media (indoors and outdoors)
- Plants, animals, and humans
- Human food and drinking water
PFASs undergo long-range transport via atmospheric and oceanic currents, shorter-chains more mobile
Most PFASs cannot be measured with current methods

- Between 2009 and 2017, 455 new PFASs were detected in environmental media and commercial products (Xiao 2017).
- Most PFASs (>95% in some environmental samples) cannot be quantified due to lack of analytical methods.

ITRC (2018) (source: J. Hale, Kleinfelder)
The California Code of Regulation identifies several so-called “exposure potential” hazard traits

- Environmental persistence
- Mobility in the environment
- Bioaccumulation
The California Code of Regulation identifies several so-called “exposure potential” hazard traits

- Environmental persistence
- Mobility in the environment
- Bioaccumulation
- Lactational and transplacental transfer
Safer Consumer Products Key Prioritization Principles

There are potential exposures to a Candidate Chemical in the product AND One or more exposures have the potential to contribute to or cause significant or widespread adverse impacts

1. Candidate Chemical List
2. Priority Products
3. Alternatives Analysis
4. Regulatory Response
Proposed Priority Product: Carpets and rugs containing PFASs

Rulemaking start planned for early 2020.
Proposed Priority Product: Treatments containing PFASs for use on converted textiles or leathers

Draft Profile posted and public comment period through December 31st.
Considered for Priority Product selection: Food packaging containing PFASs

- Background document published October 24, 2019.
- Public comment period through January 14, 2020.
Thank you!

Contact me: Andre.Algazi@dtsc.ca.gov

SCP home page: https://dtsc.ca.gov/safer-products/

CalSAFER: https://calsafer.dtsc.ca.gov/