

Recent Animal Toxicity Findings on PFAS

Christopher Lau

Reproductive and Developmental Toxicology Branch Public Health and Integrated Toxicology Division Center for Public Health and Environmental Assessment Office of Research and Development Research Triangle Park, NC

Disclaimer: Content of this presentation does not reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

UC-Berkeley/Cal EPA, 2019

Legacy PFAS (PFAA) toxicity in Animal Studies

- Hepatic and Metabolic toxicity
 - hepatomegly; aberrant histology; fatty liver; decreased serum cholesterol/TG; changes of liver enzymes less consistent
- Reproductive and Developmental Toxicity
 - weak reproductive effects; few and transient birth defects: neonatal mortality; low birth weight; growth deficits and developmental delays
- Immunotoxicity
 - thymic and splenic atrophy; reduced acquired and innate immune responses
- Tumor Induction
 - liver, pancreas, testes
- Endocrine Disruption
 - reduced serum T4, no change in TSH
- Neurotoxicity
 - Few reports of neuronal deficits and behavioral abnormalities

Some Proposed MOA for PFAS

- Activation of nuclear receptors that regulate energy metabolism
 - PPARα, PPARγ, CAR, PXR
- Inhibition of gap junction at cell membrane to disrupt cell-cell communication
- Partition into membrane phospholipid bilayers
 - lung surfactant?
- Interference of protein binding to displace endogenous ligands
- Induction of oxidative stress
- Induction of mitochondrial dysfunction
- Inappropriate actions on cellular or molecular signals that regulate cell functions

Recent Animal Toxicity Findings of PFAA

- Increasing use of zebrafish models in addition to rodents
- Comparative studies with multiple PFAA (functional groups, chain lengths)
- Findings are largely consistent with those already identified
 - Zebrafish model generally recapitulates rodent findings
- Very little significantly novel adverse effects reported
- Mechanistic findings begin to fill data gaps
 - Cellular and molecular pathways to elaborate effects on energy metabolism and oxidative stress

Some Emerging PFAA Alternatives

PFOA

ADONA

F-53B

NBP-2

Perfluoroalkyl Ether Carboxylates

- **ADONA**: *ammonium* 4,8-*dioxa*-3H *perfluorononanoate*
 - Apparently short half-life in rat, detectable but not accumulated in in liver
 - Increased liver weight, hepatocellular hypertrophy
 - Activation of PPAR α in liver
 - No developmental toxicity detected
- **GenX**: ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate
 - Short half-life: 5h in rats, 20h in mice, detectable but not accumulated in liver
 - Increased liver weight (hypertrophy), necrosis, elevated serum ALT, AST, activation of $\mbox{PPAR}\alpha$
 - Liver, pancreatic, Leydig cell tumors
 - Developmental mortality, low birth weight, growth deficit (potency << PFOA)
 - Immunomodulatory effects (< immunosuppression)
- **PFMOAA**: *difluoro(perfluoromethoxy)* acetic acid
 - Below detection limit in serum or liver 24 h after administration (mice)
 - Little developmental toxicity (in rat), <<< GenX << PFOA

Perfluoroalkyl Ether Sulfonates

- **F-53B**: chlorinated polyfluoroalkyl ether sulfonate
 - Mice: Enlarged and fatty liver, induced apoptosis, dysregulation of hepatic PPARα and PXR (effects > PFOS); Inflammation of GI tract
 - Zebrafish: bioaccumulated in liver/gonads, hepatotoxicity (hepatocellular vacuoles and oxidative stress); uninflated swim bladder in larvae
 - Chick: enlarged liver in embryo
- **Nafion Byproduct-2**: *perfluoro-2-{[perfluoro-3-(perfluoroethoxy)-2-propanyl]oxy}ethanesulfonic acid*
 - Hepatomegly, fatty liver: does not activate PPARα (mice)
 - Developmental toxicity: neonatal mortality (rats)

Questions?