#### Removing Persistent PFAS: Implications for Efforts to Group Contaminants



#### **David L. Sedlak**

Department of Civil & Environmental Engineering University of California, Berkeley SRP Workshop on PFAS Contamination December 13, 2019

# Physical Treatment: Water (GAC, IX)

- Wellhead/point-of-use treatment
- Municipal water treatment





Fig. 8. Time to breakthrough 10% C/C\_o (BVs) for the AE and GAC columns. McLeaf et al. (2017)



#### **Physical Treatment: Immobilization**

Ziltek collected PFOS/PFOA containing soil and groundwater samples from a contaminated site in Australia for treatment feasibility trials.

Ziltek's immobilisation reagent RemBind was mixed at various ratios with the soil and water samples, and after 24 hours the treated samples were sent to an independent accredited laboratory for analysis.

Results show that RemBind reduced the leachability of the PFOS/PFOA compounds by up to >99% thus providing a cost-effective solution for the management of these contaminants.







#### **Soil Treatment Results**

|              | PFOS*<br>µg/L | PFOS %<br>Reduction | PFOA*<br>μg/L | PFOA %<br>Reduction |
|--------------|---------------|---------------------|---------------|---------------------|
| Control      | 62.5          | -                   | 2.7           | -                   |
| RemBind      | 0.39          | 99%                 | 0.12          | 95%                 |
| RemBind Plus | <0.02         | >99%                | <0.02         | >99%                |

\*Australian Standard Leaching Protocol

#### Water Treatment Results

|         | PFOS<br>μg/L | PFOS %<br>Reduction | PFOA<br>μg/L | PFOA %<br>Reduction |
|---------|--------------|---------------------|--------------|---------------------|
| Control | 8,800        | -                   | 398          | -                   |
| RemBind | 74.4         | 99%                 | 28.8         | 93%                 |



Z082-04 02/18



## **Chem/Bio Treatment: In Situ Remediation**



**PFAA** Precursors

PFAAs





### **Chem/Bio Treatment: Pump & Treat**



**PFAA** Precursors

PFAAs





### **PFCA Precursor Measurement (TOP Assay)**



Houtz and Sedlak ES&T, 2012, 46, 9342-9349





### **Extension of TOP Assay**



Zhang et al. *ES&T Letters*, 2019, 6, 662-668





# **Product Design for Degradability: Refrigerants**





Xiang et al. *PNAS*, 2012, 111: 17379-17384



## **Take Home Points**

- Physical Treatment: Adsorption correlated to chain length (anions)
- **Chemical Treatment:** Poly- goes to per-, which is hard to degrade
- **TOP Assay:** May avoid analytical poly- problems
- Next Generation PFAS: Ethers, chlorines, alkyl groups



